AQA Computer Science
Non Examined Assessment

CA

The Chrome Application Game Engine
github.com/ChilliByte/CAGE

Deep Sohelia
Center Number: 20153
Candidate Number: 8423

Contents

Overview: 7
Analysis 8
The Problem: 8
Example 1: Earth Keeper 2 8
Example 2: Tribal Wars 2 9
The Current System 10
Proposed Solution 11
Prospective Users 12
User Needs 13
Aims And Acceptable Limitations 13
Aims: 13
Limitations 14
Justification of Solution 14
Proposed structure of new system 16
File Structure: 16
Game Structure 16
Design 17
Interviews 17
Game Engine Structure 21
Game Flow Structure 22
Module Structure 23
Full Module List 23
Module Inheritance Diagram 24
Full Program Structure 25
Final Aims 25
Technical Solution 27
How CAGE works: 27
Core Files 27
Modules 27
Level Files 27
Images 27
background.js and manifest.json 28
index.html and style.css 28
index.html 28
style.css 28
main.js 29
Key Variables and Definitions: 29
Functions 29

Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 2 of 143

game.js
Game Object
Game Properties:
Game Methods
The Render Loop
RequestAnimationFrame();
requestAnimationFrame shim by Paul Irish
levels.js
How to use Level
Level Object Constructor
Level Object Methods:
LevelObject.add(...args)
The ...args syntax
The this syntax
Console.error vs throw Error
LevelObject.colCheck(obj)
LevelObject.draw()
LevelObject.reset()
LevelObject.scroll(x)
LevelObject.update(multiplier)
box.js
projectiles.js
Module Dependency Management
Inheritance
Multipliers
Class Properties
The move() function
player.js
Player Object Constructor
Player Object Properties
Player Object Methods
PlayerObject.checkDir(dir)
PlayerObject.checkKeys(multiplier)
PlayerObject.draw()
PlayerObject.hit(damage)
PlayerObject.kill()
PlayerObject.update(multiplier)
Player Class Static Methods:
Player.drawAll();
Player.moveAll(x,y);
Player.scroll(x);
Player.updateAll(multiplier);

Deep Sohelia
CAGE - The Chrome Application Game Engine

30
30
30
30
30
31

32
33
33
33
34
34
35
35
36
38
38
39
39
40
41

43
44
44
45
45
46
46
46
46
47
47
47
47
48
48
48
49
49
49
49
49

Page 3 of 143

input.js
Fetching Keyboard Events
Fetching MouseDown Events
images.js
ImageObject types
Tile
Sprite
BlockColSprite
BlockColTile
RepeatingTiles
SpriteSet
Background
How to use images
Backgrounds
Invisible Sprites
PlayerSprites

Mob Sprites
Collectibles
Ancillary Modules
Al

NoAI()
StaticAl()
LinearAl()
PatrolAl()

VerticalPatrolAl()
Bouncy Platforms
Breakable Platforms
Coins
Crates
Doors
Icy Platforms
Mobs
Moving Platforms
Platforms
Switches
Size Power Ups

Testing
Video Testing:
Screenshots:
User Feedback:
Game

Deep Sohelia

CAGE - The Chrome Application Game Engine

49
50
52
52
52
53
53
53
53
54
54
54
54
55
55
56
57
57
58
59
59
59
59
60
60
61

62
63
63
64
64
64
65
65
65
65

67
67
67
67
67

Page 4 of 143

Engine 69

Evaluation 70
Appendix 71
CAGE Files: 71
background.js 71
debug.js 72
game.js 72
index.html (default) 73
index.html (platformer) 74
main.js (platformer) 76
manifest.json 78
style.css 78
Modules: 80
ai.js 80
bouncingPlatform.js 86
box.js 87
breakablePlatform.js 88
coin.js 89
collectible.js 90
crates.js 91
doors.js 93
hud.js 94
hudElements.js (platformer) 95
ice.js 95
images.js 95
input.js 97
level.js 98
menus.js (platformer) 102
mob.js 103
movingPlatform.js 105
platform.js 107
player.js 107
projectile.js 111
sizePowerUp.js 111
sprites.js (platformer) 112
switches.js 118
Levels of Game: 120
World 1 Level 1 (w1l1.js) 120
World 1 Level 2 (w112.js) 121
World 1 Level 3 (w113.js) 122
World 1 Boss (w1boss.js) 123
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 5 of 143

Overview:

A commonly occurring complaint of Chromebooks is that there are no games for them.
Given the existence of Chrome Packaged Applications, the availability of
Hardware-Accelerated Canvas and the advent of ES6, it seems that there should be a
multitude of these games.

A browse of the Chrome Web Store shows many, many, games, however, the
issue is that they are not well moderated and few still are fully packaged applications.
The vast majority of these applications are simply links to websites, others are
embedded flash games, and others rely on Unity, which is unsupported by
Chromebooks. This lack of native, high quality games on the Chrome Web Store does
not do the capabilities of the platform justice.

There would be more of these well-built packaged applications if there were an
easy to use method of creating games, a Game engine, as it were. This way, games
could be quickly written for the engine, packaged up and made to run on Chrome. This
way, a game written once in HTML, CSS and Javascript can be run on almost any OS
without having to be re-written or converted. The apps can even be made to run on
Android natively, or even on iOS using Apache Cordova, although in order for this to be
useful touch controls should be implemented, obviously.

| plan to write an 2D platformer game engine, written using ES6, the newest
standard of Javascript which includes inheritance, classes and other object-oriented
syntax missing from the old standard. It will be modular, so that functionalities for
certain types of object can be added or removed, as needed. For example, if you require
your Game to have water you can swim in, you simply need to include the relevant file,
and if you need to remove the code for Ice blocks, simply dereference the file for that.

In order to showcase the engine and help guide its development, | will be
designing it around a Game, that way the Game engine can be optimized for the
intended game, rather than the end user needing to optimise their game code around
my engine. It will be a 2D sidescrolling platformer, composed of 4 levels, 3 stages and a
boss battle. The game will contain platforms, powerups, coins, ice, water, flying, trap
doors, switches, low and high difficulty Al enemies, including bosses. All of these things
would be modular, and ideally, would be downloadable from an online store, where
people could share their add-ons. This, however is beyond the scope of this program.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 6 of 143

Analysis

The Problem:

As mentioned in the overview, whilst the capability for fully packaged, well made games
to be uploaded to the Chrome Web Store is available, it is currently too obscure and
difficult to create and upload these, with multiple libraries needed to be set up and used
simultaneously before a game can even be written. Due to this, most hobbyist or
amateur game developers are still deciding to create their games with the older, less
secure Adobe Flash platform, before hosting the game on a website, and simply adding
a link to the Chrome Web Store. This may not seem an issue, as Chrome can be made to
open these applications in an application window, issues arise when these websites use
libraries not supported by Chromebooks, the key users of the Web Store, or, more
menacingly, when these websites spoof Google login pages to phish player's login data
before redirecting to a low quality flash game.

Example 1: Earth Keeper 2

- 2 x

/6

¥z

19:17 ¥ u GB

Figure 1: A screenshot of Earth Keeper 2 running on
Chrome OS

As you can see, the game is running in an application
window by default, and there is no option to let it run in
the browser, this shows that the Game is in fact a
packaged application. It is lightweight at 16mB, and runs

Figure 2.
very well, despite my Chromebook only having a mobile Sgreenshut of EPS
processor. It runs consistently at 60 frames per second. meter

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 7 of 143

However, the game was written in Scirra’s Construct 2, a game

creation program for Windows and OSX. This severely limits Chrome /\/,
OS or Linux users, and not many functional game editors exist for 3 \2/*,
these operating systems, especially in the case of Chrome OS. To \,\ ,>
develop games for Chrome OS, it would be most useful to be able to —
develop those games on Chrome OS, preferably for free, so that Consh:;ct =

game development and design is accessible to all Chrome OS users.

(@ SCIRRA

Example 2: Tribal Wars 2

v
‘ :
& Tribal Wars 2 30070 Heome
ipp-googie.tribatwars2.com
HekodA s (19 ¢ E
OVERVIEW REVIEWS SUPPORT RELATED G+ 121

ﬁ Compatible with your device

Rally your armiles, fortify your castle
walls and lead your soldlers to glory!

A Website
@ Report Abuse

Additional Information
Version: 21340

Updated: 23 February 2016
Size: 275KiB

| angiiazas See all 23

e ﬁ ﬁ = = + - 9 G 2 21:10 % @ GB %
Figure 3: The download page for Tribal Wars 2

Most games on Web Store are more akin to this, a Web-Based game, with a
corresponding Chrome “App” that merely opens the game in a new tab. The games vary
in quality, however Tribal Wars 2 is very good compared to the rest of the games in this
Category, most of which are of a low quality, either being uneventful and tedious, or
downright dysfunctional clickbait. These are normally written with HTML, CSS, JS, and
Node.JS, though the lower quality games are often written in Flash, before being
deployed onto the web. After this, the creators quickly create a Chrome Application and
add it to the Web Store. This may also be generated by a program if the game was
written in a software package that had this functionality.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 8 of 143

The Current System

Most games are currently made in a drag and drop, graphical program, like the
aforementioned Construct 2, by Scirra. These programs contain a user interface in
which to design and develop the game, as well as a way to demo the game, and
programs to export the game into a relevant, or many relevant, file format.

2 (test build) - Layout 1

b C s -

H - - p =
Objects 2 Layoutl [Eventsheetl ¥ | Properties 2
& 1' objects 4 |
\ =]
) e

Name monster
background catapult Plugin Sprite

% Layer Layer(
Angle 0

monster shadow T Opacity 100

Position 506, 170

Size 266, 282
trooper

=

=

Edit variables Add [edit

m

Edit behaviors Add [/ edit

Animations Edit

m

Size Make1:1
Initial visibility Visible
Effect (none)

Auto mirror/flip (none)

More information Help

HTML

4 | M. | r

Ready Approx. size: 150 kb. D events Active layer: Layer 0 Mouse: (75.2, -151.2, 0) Zoom: 83%

Figure 4: A screenshot of Construct 2, editing the demo game provided with the package

In Figure 4, you can see three panes, on the left, there are the objects, which are entities
such as players, enemies, pickups and platforms for use within the game, which are not
critical to its functionality but are to its aesthetics. In the center is the stage, where the
game elements are arranged and positioned. This is where the physical level is built: the
way the blocks are placed, where enemies appear, where powerups are available, et al.
On the right are the properties of selected objects, in this case, the large enemies, here
you would be able to edit the properties of the object, such as its size, its maximum
speed, and a whole host of other properties, the list is limitless.

A basic level may be composed of three objects: A platform, a player, and a goal. These
three would be created using the relevant menu, and dragged onto the center stage.
The rightmost menu would then be used to set the platform as an unmoving solid, the
player as a solid controlled by inputs, and the goal as a fixed non-solid, which would

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 9 of 143

reset the game when hit by the player. This is the most basic of games, and more
complex behaviours can be created fairly easily. How to do this, of course, is beyond the
scope of this document.

As a Chromebook user, and a programmer, | have always wanted to create games for
my Chromebook, but due to the limitations of the Operating System, packages like
Construct 2 cannot be installed, and a web-based alternative must be used. In fact, this
is such a frequently asked question, Google has written a page addressing it (
https://developer.chrome.com/apps/game_engines), where they recommend
PlayCanvas and WiMi5 as web-based methods of creating a game.

However, these both have their own limitations. PlayCanvas is very feature rich and is
very professional, however it struggles to run on my machine, which is one of the better
Chromebook models, meaning that to run PlayCanvas well, you need either the more
powerful Chromebook Pixel, which costs £800, or a Desktop PC with more power, both
of which defeat the point of using the budget-price Chromebooks.

WiMi5 suffered the same issues as PlayCanvas, but on top of that, instead of a simple
property editor, uses a visual programming language, which even after 3 hours of trying
to decipher, | could not use to create a game more complicated than the tutorial game.
Any solution | create to this problem should take this difficulty into account.

Proposed Solution

In order to remedy these poor quality games, and this lack of a method to quickly
develop enjoyable games, | wish to develop a simple Javascript Based Game Engine,
which can be used in conjunction with the Chrome OS IDE, the Chrome Dev Editor (or
any other IDE of the users’ choice) to develop a game. | want the system to be flexible
and adaptable to any type of game, and as such, it should be a modular system. It
should take in a set of module files, image files, and level files, and create a fully
functioning Chrome Application complete with menus and progress saving.

Ideally, the Engine and Modules would all be downloadable from one organised,
centralised, resource, such as a website, to which people could add their own assets,
modules, levels or even games. However such a system would be very complex to set
up, and would require a large selection of modules to begin with in order to build a user
base. A more achievable goal for this project would be to write for core functionality of
the Game Engine chiefly its modularity and its ability to output as a Chrome Application.

Prospective Users

The prospective users of the game engine will be novice programmers who want a
clean, easy way of learning how to create a game on any device. The physical game will
only be a proof of concept, and as such will be targeted at people roughly my age who
have played many games and will able to give valuable feedback on intricate details that

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 10 of 143

https://developer.chrome.com/apps/game_engines

others may miss, which will help me improve the engine. | will be testing and receiving
feedback from Computer Science students of varying technical ability, as they are of the
skill level my game engine is designed for, and as such they are an easily accessible
subportion of my target market. The names and backgrounds of the prospective users |
have gathered are:

Name Years Programming Background

Hugh Wells 8 Backend Web Engineer

Matthew Randell 7 Various

Sam Needle 1.5 Comp. Science Student
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 11 of 143

User Needs

In order to create enjoyable, high quality games, a Game Engine that is capable of
creating them. As such, | need to create a system that is capable of:

Creating Chrome Applications
Creating and managing Game Objects
Running and Displaying the Game
Taking in custom level files

Taking in custom module files
Supporting multiple devices

This will likely be done programmatically instead of graphically in order to keep the
system fast and lightweight. Due to this, a comprehensive set of documentation will be
needed along with commented code in order to make the system understandable and
easy to use.

In order to facilitate the development of better games, the system needs to be able to:

Handle many diverse object types

Handle many levels at once

Handle a large variety of media, such as sprites, backgrounds and music
Generate lightweight applications

Aims And Acceptable Limitations

The system is severely limited by the devices it is running on, and as in theory, its scope
is limitless, it is important to precisely define what is an is not within the scope of this
project.

Aims:
e Create an ES6 based modular 2D game engine
o This will be done by writing a series of scripts which will handle creating a
Chrome Application, as well as setting up a Game Canvas which can be
accessed, modified and drawn to
e Create a set of demo modules to work with the engine
o These will include core modules that give the key functionality of a
platformer game, as well as a host of ancillary modules which will extend
the functionality of the engine.
e C(Create a basic game as a proof of concept of the system working
o This will be a small platformer, with a small handful of levels and a
sandbox level which will be used to demonstrate all of the features and
modules | have written in action

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 12 of 143

Create a centralised resource for the game engine, containing tutorials and
documentation on each of the modules | write
o This will be written in Markdown using GitHub's wiki feature

Limitations

Ultimately, | intend for the system to be collaborative, and as such, an exhaustive
list of modules is neither practical nor necessary, and | should only create a small
number as a proof of concept

Building on the above point, while a collaborative system for assets and modules
would be required for the system, it would be a very complex and intricate
system, more so than the game engine itself, as | would need to handle user
accounts, build version control systems and content delivery networks etc. Such
a system deserves its own project and in depth analysis, and as such, it is beyond
the scope of this program. However, a centralised resource is still needed, and
that is one of my aims.

Chromebooks struggle with 3D graphical rendering, and as such 3D Graphics are
beyond the scope of this program.

| am not a Game Designer, nor a Graphics artist, and as such, the sample game
does not need to be of a high quality, as the project is focused on the engine and
its capabilities to produce a high quality game, rather than mine.

A graphical level editor, while useful, would be difficult to run on Chrome OS, and
as such would not be feasible.

Justification of Solution

The key features of the solution | have proposed are that it is written in ES6, modular
and collaborative. These are all key features if | am to begin tackling the problem of
low-quality games on the Chrome Web Store.

The use of Javascript is mandatory as it is the language with which Chrome Apps are
written, and ES6 is the newest Javascript (or ECMAscript) specification, and includes
Classes, inheritance and Arrow functions, equivalent to lambda functions.

Modularity is where the system gets its power and flexibility. | could write the system to
contain every type of game object conceivable, but almost all of these would be unused
- your platformer would never use a set of tile-based enemies etc. Modularity means
that the game will only contain code relevant to it, and no code will go unused. This way,
games are kept lightweight, but the system is still adaptable. Instead of newcomers
attempting to modify the game engine to implement a feature, they can merely import a
module from a centralised resource to add the functionality they need. The system
should be able to work be the game a turn based card game or a multiplayer
platformer.

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 13 of 143

Of course, for the system to be adaptable and modular, there needs to be enough
modules to facilitate this, quite literally hundreds, and as such, it would be impractical
for them all to be written by a single person or team of people. Ideally, the modules
would be written by people who would upload the modules to a central source, for
other users to incorporate into their games. This way, there would most likely be more
modules that if they were all written by myself. The more modules there are, the
greater the range of usable objects within the produced games, and the greater the
range of games that can be produced.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 14 of 143

Proposed structure of new system

File Structure:

— Engine
Modules
Application
— Assets
T Levels

Game Structure

K—b Window
1\
Modules ‘ Engine ‘ Menus
&
>
Assets é\ Game
Application -< ; = :
Levels }9 HUD Elements él Players
G Wil ¥
I .
A Al
Collectible Dynamic Static
Elements Elements Elements
N ¥ ’

——» Is created by
——+ Isstored in

———> Depends upon

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 15 of 143

Design

The design process consisted of multiple stages, beginning with interviews with my
prospective users, then leading to more in depth definitions of the structure of the
game engine, how the modules work together, the program flow and the full list of
modules | will create.

Interviews

| began the design process by speaking to my prospective users about what they would
require in the system, and used those to form a more thorough design specification to
build upon my aims. Sentences | have said are in bold.

Q) What would you say is the most important aspect of a Game Engine?

Hugh:
Game Engines in general? Or just yours?

In general.

I think it's important that they are lightweight, fast and widely supported, especially if they
are being used to create games that are ported across multiple platforms. | think a game
should be a standalone application and I really dislike having to download other programs
or plugins to make my game function. And because of this, | think that the game engine
should be able to produce these standalone games that use technologies that are widely
supported. The speed and filesize | mentioned are sort of generic, frankly, I think all gagmes
should be as small and as fast as possible.

You said technologies that are widely supported, what does that include?
Anything written in C or Java, those are supported by most devices. | think web technologies
are the most widely supported, | can't think of anything that doesn’t support them, and it
would mean that you wouldn’t have to mess around with porting your games.

Matt:

That's quite a broad question there, Deep. Flexibility, | think, is the most important, | should
be able to use the same game engine to create a puzzle game or a multiplayer action game.
Would you say a modular structure is the best way to accomplish this?

So you mean like | could add in or remove game elements as necessary?

Yes, so you could simply include a “platformer character” file as well as a
“platform” file, and then use those within your code, or equally a “gameboard” file
and a “game piece” if you wanted to create a board game.

Yeah, | like that idea, it would make the game engine very flexible. Though, | think it'd be
important to have a lot of those modules, and make them easy to implement, else your
system becomes difficult to use.

How many would you say is sufficient as a proof of concept?

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 16 of 143

I think that depends on how you're going to show off the engine.

I'm going to be creating a simple platformer game with about 4 levels

In which case, | think about 15-20 should be enough, given that about half of those will
probably things such as a level module, or an input module.

So excluding modules necessary to set the game up, you think 5-10 extra modules
is about right?

Around that, yes.

Sam:

I've never really used a Game Engine. | play quite a few games, but I've never really made one.
I think ease of use is the most important features, | don’t particularly want to spend hours
reading up tutorials on how to use a game engine. | want to be able to download it, install it,
and get to designing levels almost immediately.

Would some form of “getting started” project help with this, so that as soon as
you open the program, a simple 1-level game is waiting for you to modify?
Assuming the interface is intuitive enough for me to modify levels without too much help, |
think that would be the best solution, as it would save me from having to set up all of the
game settings or whatever each time, | could just modify a preexisting game.

You said “intuitive”, could you elaborate a little on what you mean by that?

I'm not quite sure what your final interface will look like, but what | mean is that | should not
have to read up on the fine details of your engine to perform basic actions. If | want to create
a new object, the way I do that should be as few steps as possible, and as logical as possible.
Would you say a “new object” button/function is intuitive enough?

If it's logically named, yes, | don’t want to be guessing what things do.

Q) Are there any key features you would like to see in my engine?

Hugh
If this is a Chrome Application game engine, you really need some simple way of actually

creating the application, without the user needing to be an expert with chrome.

Most of the app generation is handled by Chrome, if the app is written in HTML
etc, all you have to do is upload it.

Ah, that sounds reasonable, just make sure that is made clear to the user, as they will
undoubtedly want to play their gagme and I'm sure they won't all know how to find the upload
button.

Matt

I think the way you handle HUD elements and menus should be simple and flexible, users
should be able to create these elements without needing an in depth knowledge of whichever
graphical library you use.

If | were to use Web Technologies, would you say writing these elements in HTML
and CSS, then adding interactivity through Javascript would be too complex?

As long as the system was logical and you provided sample menus and HUD Elements which
would show how they would be created, | think that'd be acceptable. Novice game designers
shouldn’t have to learn ES6 just to create a “play” button.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 17 of 143

Sam

I think an easy way of creating levels is the most important, | should be able to place game
objects precisely where | want to without any difficulty. That, and a wide range of game
elements so I'm not limited in what | can produce.

Q) Are there any advanced features you would like to see?

Hugh

If you're going to be using web technologies, some form of integration with WebSockets to
facilitate multiplayer between computers would be pretty cool.

Do you mean real-time or turn based multiplayer?

If it's feasible, both, though | suspect that might be beyond the scope of your project.

Matt

I'm assuming you’re going to add some form of Al? If you're going to have platformer
enemies?

Yes, though they’ll likely be simple, like a patrol between 2 points sort of thing.
Maybe some way for the more advanced programmers to create their own behaviours? Like
maybe add a boss fight as a way of showing how custom behaviours may be defined
Would you say these should be modular as well?

I think for this project, a single, hard-coded boss battle should be sufficient, but if you take
this project further and add multiple bosses, they should be contained to their own modules
so that players can add and remove them as they please.

Sam

Advanced features? What like?

Well, two features that have been proposed is real time cross platform
multiplayer, or custom bosses.

Oh, so like things that would require the game designer to know how to program?

Yes, more advanced features that aren’t necessarily transferrable between
games.

I'm not too sure. Maybe some way of having different level types in a game?

What like?

I don't know, let say | was building an open world isometric game, | would have a few
“isometric level”s would I not, for each town or whatever

Yes.

And if | wanted the routes in between the towns to be sidescrolling levels, | would have to add
“platformer levels” to the game

Yes, and you're suggesting a way of handling both these types, and the different
physics between both would be useful?

Yes, either have this all handled by the game engine itself, or allow me to detect my own
custom game events.

Game events?

Yeah, so | could write a function to check if the player has stepped on a platform, and if they
have, then summon in a new enemy or something. And that code would be run every frame
so | never missed anything.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 18 of 143

Q) What are your feelings on a text-based way of creating levels, as opposed to a
GuUI?

Hugh

I'm not sure, It sounds like it could be a little cumbersome to use, especially if you can't see
your level as you edit.

If your game updated instantly as you edited, and all you had to do to view your
changes is refresh the game, would that be acceptable?

As long as there was some way to skip to the relevant part of my game, yes, | don’t want to
have to play through all of it to view the last level.

Matt

I'm not quite sure what you mean. Would users be typing numbers into a 2D array? Would
they be writing an XML file? JSON? | need more information.

I haven’t finalised the format yet, but it would likely be based on ES6’s
constructors.

How would those constructors be used?

So a user would define a level variable, and then add objects to the level using
some form of level.add() method, and the object to add would be generated via a
constructor function.

So you would be creating game objects, and then be pushing them to a game level?

Yes.

I think that’s logical, though the constructors should be logically named, and a list of them
and their arguments should be written up somewhere in order to make them easier to use,
Is the source code an appropriate place for this?

Yes, but you should Ideally have some form of documentation as well.

Sam

I don’t see anything wrong with a text-based level editor, but why wouldn't you just write a
visual one?

Chromebooks aren’t very powerful, and | want this system to work on
Chromebooks, Raspberry Pi’s, anything really, regardless of power

Ah, | see, well, as long as | have a simple method of creating levels and objects, and | can also
view my level as | edit it, that would be fine.

Other people | interviewed also raised those points. Would you say they are
absolutely necessary, or simply an added extra?

I think they are necessary in order to actually create a game, else you would be the only one
who would know how to add objects to your game.

Q) Is documentation important to this project?

Hugh

Almost certainly, you need to write up how every single piece of your engine works, as
someone will inevitably have an oddly specific thing they wish to implement and they will
need to know exactly how your engine works.

Matt
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 19 of 143

I think tutorials would be more appropriate than traditional “this function does this and
takes these parameters” style documentation. | would probably write a few tutorials and then
simply document what each module does and how to use it, without going too much into
specifics.

Sam

I have no idea how your system will work, and neither will | know how to use it. You
absolutely need documentation. Combined with the demo project i mentioned earlier, you
should probably write up what each module does, and how to use it. The specifics of how it
works should probably be written up in the source, but not in the documentation

Game Engine Structure

The game engine would likely be composed of five different sets of files:
Chrome Application Files

Game Engine Files

Modules

Levels

Assets

Chrome Application files are files that are required for the Chrome App to function, they
include:

A manifest.json file to specify data about the app, such as its name and version
A background.js file to launch the app

An index.html file to display

And a set of icons in an assets folder

The game engine files would handle creating a canvas, and setting up key game objects
and variables, before the modular elements would add the functionality to the game
canvas.

The modules come in two classes, core and ancillary, with core modules adding key
functionality to a game, such as levels, players, user inputs, and ancillary modules
adding extra features, such as powerups or special types of enemies

Level files are written using methods and functions defined in the modules, and are
included in the index.html file along with the modules to load them into the game.

Assets are various types of images that are are used in the game, such as backgrounds
and sprites.

Game Flow Structure

The game would likely consist of a series of function calls and iterative loops, nested
within each other in order to provide the functionality of a game.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 20 of 143

updatelLevel

! !
[nextFrame J

|

Yes

Mo

~
-

updatelLevel

-
L.

i l ™y
updatePlayer
Y A

The game loop would run every frame, at roughly sixty times per second, and that
should update the game each time it is run, if the game is not paused. The above
diagram roughly shows the sequence of events the code would follow in doing this.

The level is updated first as elements of the game (enemies, moving platforms etc) will
need to move and update the status of anything they collide with. The level may also
need to updated to scroll it along or switch level. If the scrolling was done after the
player was updated, the level would judder between frames as the player would move,
then the level would scroll the player back next frame, and then this would repeat.

Once the level has updated, then, the player can be updated. First the user's key presses
are checked, and these are used to update the player’s velocity. Then, the player is
moved depending on its velocity. The player is then checked for collisions between all
game objects, to make sure the player interacts with them. The actual interaction is
handled both by the player, and by the object it collides with

Module Structure

Modules would come in four varieties:
Statics,

Dynamics,

Collectibles

Unclassifieds

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 21 of 143

Static objects do not move relative to the level, and would not interact with any moving
objects, beyond collisions. They would not be updated every frame, and they do not
need to be reset. The most common type of static module would likely be Platform

Dynamic objects are any objects that change state between frames, or that need to be
updated when collided with, Enemies, Moving Platforms and Switches are all examples
of this. Dynamic objects are checked for collisions between all other objects.

Collectible items are dynamic objects which can be collected, and which only interact
with the player. Coins and Powerups are the most common example of this

Unclassified modules are modules which are not game objects, but are required for the
game to function. Levels, Images, Al, are all examples of these. All static, dynamic and
collectible objects can be pushed into a level, Unclassified modules cannot be added to
a level. Players, therefore are Unclassified objects, as they are not pushed to a level,
they are pushed to the game object, and they are drawn within a level.

Full Module List

Modules: Core Ancillary
Statics Box Doors
Platform Ice
Dynamics Projectile BreakablePlatform
BouncingPlatform
Crates
Mob
MovingPlatform
Switches
Collectibles Collectible Coin
SizePowerUp
Unclassifieds | Level Al
Player
Input
Images
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 22 of 143

Module Inheritance Diagram
Green boxes indicate root classes, blue modules have dependencies

Box

Switches

Projectiles

Collectibles

Crates

Coins Powerups
Platform

SizePowerlUp

Bouncing
Platform

Door MovingPlatform

lce Breakable
Platform

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 23 of 143

Full Program Structure

The elements of the game will be pushed into a hierarchical structure when the game is
loaded, in the following structure:

Window

HUD Elements Players

Statics Dynamics Collectibles

The game object, modules and any defined levels are pushed to the window object
when they are defined, as they are global entities. HUD Elements and Players, along
with all of the levels, are pushed to the Game Object, and all of the classified game
objects are pushed to their respective level objects.

This diagram shows the actual objects, the instances that are loaded while the game is
paying, and should not be confused with the inheritance or file structure diagrams
shown earlier.

Final Aims

My initial pre-design aims were:

Create an ES6 based modular 2D game engine

Create a set of demo modules to work with the engine

Create a basic game as a proof of concept of the system working

Create a centralised resource for the game engine, containing tutorials and
documentation on each of the modules | write.

| am modifying these aims, given what | have discussed with my prospective users, and
given my designs, to add the following:

e Create a ES6 inheritance based module structure, utilising polymorphism and
aggregation to create small, lightweight modules that can be used to add
functionality to games.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 24 of 143

e Create a sample, single level project aside from the basic game as a project to
demonstrate how to create and edit levels

e | will fully document every method and property of every core module in order to
make the system user friendly and accessible.

e | will add a method of detecting when certain events have occurred in order to
trigger certain user-defined behaviours.

e Write a set of logical constructors for the users to use when creating levels.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 25 of 143

Technical Solution

In this section i document every module, how it works and what its use is. Areas of note,
where | use especially interesting or complex programming constructs include:

The update() functions of game objects, which are examples of polymorphism
background.js which, combined with main.js, governs the Chrome App.

The Ancillary modules, which demonstrate modularity, and inheritance.

The player module, which highlights the use of more advanced OOP techniques
such as static methods.

Full code can be found in the appendix.

How CAGE works:

CAGE is a modular Game Engine, and is composed of two different types of script: Core
Engine scripts and Modules, upon which your levels and assets will function.

Core Files

CAGE is composed of multiple core Javascript files which work together to create your
game. These are:

index.html style.css main.js game.js background.js manifest.json

These will set up a Game Stage for you to add objects, players, enemies and other
modules onto. | document these files further below.

Modules

These are scripts, such as box. js or movingPlatform. js which add functionality to
your game. Some of these are more useful than others, and some build on the code of
others. For example, breakablePlatform.js builds on the code for platform.js
and so on. If you want to add a module to your code, it is important to include all of the
modules it relies on. These modules are stored in /modules

Level Files

Once the Core Files have set up the game stage, and the Modules have been imported
to add the required functionality to your game, Level files are where the stages are built,
and the magic happens. The modules add constructor functions, which let you add
objects to your game. For example:

levell.add(new Platform(10,5,6,1,Red));

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 26 of 143

https://github.com/ChilliByte/CAGE/wiki/Tutorial

Images

images.js and sprites.js deal with the way images are rendered to the screen.
images.js contains the code to draw the images, and sprites.js is where the
sprites are defined. For example, you may define a DirtSprite to use when making
platforms. This would be done in sprites.js and is documented below.

background.js and manifest.json

These files are for Chrome, and they store data on what the app is and how it should
run. Users should not usually need to touch background. js unless their game
requires multiple windows or other advanced features. These files are based off the
sample manifest and background created by the IDE | used, the Chrome Dev Editor.

They will, however, need to change manifest.json to the name of their game, and its
current version. The properties for this are listed below. More experienced users may
wish to change the icons or even permissions to suit their game, but this is not usually
necessary.

"name": "Platformer",
"short_name": "Platformer",

"description”: 5
"version": "0.0.1",

index.html and style.css

Index.html is used to load all of the relevant modules and levels into the game, as well
as to build the menu elements.

index.html

To include a script file, be it a module or a level, the javascript file must be included, like
SO:

<script src="pathTo/yourFile.js"></script>

Scripts are loaded sequentially from top to bottom, so included files must be included
after any modules they rely on, and before any modules that rely on it.

Menus are also written in this file, which i document later.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 27 of 143

style.css

This file is used to style the game and menus, and is not in anyway different to a normal
website stylesheet. There are a few styles in the default provided stylesheet, which
handle positioning and resizing the game canvas, as well as a few basic menu styles, but
users are free to write their own in order to personalise their game.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 28 of 143

main.js

main.js contains the key game variables, code to start the game once the page has
loaded, and code to set the size of the Chrome App Window. Most users will only need
to use this to set their

Key Variables and Definitions:

canvas,
C,

tilesX = 40,
tilesY = 20,

pixelsPerTile = 100,
u = pixelsPerTile,
currentTime = 0,
0ldTime = 0,

keys = [

delta = 0,
1,
modules =

[l

totalModules,
currentLevel = 0,
totallLevels,

Most games will almost certainly require more variables than this, and the default
main.js comes with extra variables to work with the default modules.

Game pixels, mentioned above, are independent of screen size, to make sure the game
runs correctly regardless of the screen size. The game, by default is 4000 by 2000 pixels,
and it is then resized by CAGE to the size of the player’s screen. This way, if your game
moves the player by 1000 pixels to the right, the player will always move a quarter of
the clients screen width, rather than miles off the page if they are on mobile, or an
eighth of their screen if they have an 8K monitor.

Functions

See /application/main.js for code

window.onload()

Runs reset(), fetches the canvas, gets its context and sets its size. Then calls render()
(See /application/game.js) or game.js wiki) if the level files are loaded correctly. This is
done via scriptCount()

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 29 of 143

reset()

Moves the chrome window to the top left corner, and sets it to max width and height If
you wish to adapt CAGE for a webpage, simply remove this function, though this is not
recommended

scriptCount(type)
Loops through index.html, and counts the number of included scripts in the folder
"type", and returns it.

game.js

Game.js contains the Game object, as well as the main render loop, which is run every
frame and starts adding to the call stack

Game Object

The game object contains important properties and methods for the game to run

Game Properties:

paused debug levels players hud

paused and debug store whether the game is paused and whether the game is in debug
mode. levels, players and hud are arrays which contain the relevant objects. the
Level, Player and HUD modules should push to these arrays when a new object of one
of these types is created

Game Methods

pause() play() kill()

These should be self explanatory, but game.pause() temporarily pauses the game,
game.play() plays the game, and game.kill() redefines the render() function so that
it does nothing

The Render Loop

This is a loop of code that is run every frame, which tells the game to update itself and
to draw itself to the canvas, amongst other things.

First, it generates a multiplier based on the difference in time between frames. | set this
to 1 for my demo game, but to enable delta time, just delete the 1 and uncomment the
code.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 30 of 143

currentTime = new Date().getTime();
delta = currentTime - oldTime;
0ldTime = currentTime;

multiplier = 1 ;

Delta time is the way to ensure your game runs the same no matter the speed of the
machine. If the machine is slow and the game runs at half the normal frames per
second, the change between frames needs to be double to account for this. This
multiplier is passed onto the game for it to use.

Then, the render loop updates the game, if the game is not paused:

if(!game.paused) {

game.levels[currentLevel].update(multiplier);
Player.updateAll(multiplier);

LevelObject.update() and Player.updateAll() are documented in the Level and
Player documentation.

After updating all the objects, it draws them all, depending on of whether the game is
paused or not. This is for aesthetic reasons, as it means

c.clearRect(@, 0, 40*u, 20*u);

game.levels[currentLevel].draw();
Player.drawAll();
HUDElements.drawAll();

The drawing functions are documented in Level, Player, and HUD, below.

Finally, if the game is in debug mode, it calls the debug function, before calling the
render function again.

if(game.debug) {
debug();

requestAnimationFrame(render);

RequestAnimationFrame () ;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 31 of 143

Javascript's window. requestAnimationFrame() is an iterative function that is used
instead of the older setTimeout (). Originally, setTimeout () was used for animations,
as it takes a function and a time period in milliseconds, and calls the function after every
time period, so people would have code that looks like this:

function render() {

setTimeout(render,20)

This, however is not the most optimised solution, and as such uses more CPU, GPU and
RAM than the newer requestAnimationFrame(). setTimeout also runs regardless of
whether or not the game is in focus, and so navigating away from the game still leaves it
running, consuming power.

requestAnimationFrame() is useful as it runs as soon as the browser is ready, rather
than at a fixed time interval, allowing for smoother animations. It also is optimised for
the browser it is running in, as “The browser can optimize concurrent animations
together into a single reflow and repaint cycle, leading to higher fidelity animation.”
(Paul Irish, from whom initially obtained the requestAnimationFrame shim | am using
for my code.)

requestAnimationFrame shim by Paul Irish
https://www.paulirish.com/2011/requestanimationframe-for-smart-animating/

/ shim layer with setTimeout fallback
window.requestAnimFrame = (function(){
return window.requestAnimationFrame ||
window.webkitRequestAnimationFrame ||
window.mozRequestAnimationFrame | |
function(callback){
window.setTimeout(callback, 1000 / 60);

s

»O;

(function animloop(){
requestAnimFrame(animloop);
render();

NOs

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 32 of 143

https://www.paulirish.com/2011/requestanimationframe-for-smart-animating/

// 60fps with the setTimeout fallback.

levels.js

Level.js is a core module that creates a class for platformer levels. The module uses
some methods of Player.

How to use Level

First create a new level:

var levell = new Level(60,noBg,noFg);

Then add objects to it:

levell.add(new Platform(16,60,1,4));

This should be done a file called 1levell. js, which needs be included in index.html

Level Object Constructor

constructor(length,background, foreground)

The level constructor takes 3 arguments:

length, length of the level in tiles. Should be an integer, but any positive real number is
valid.

background and foreground, which are both Backgrounds, defined in images.js.
LevelObject.draw() first draws background, then all of the level objects, and then
foreground over the entire game. Use these to draw decorations in your game.

Level Object Properties

len = length*u; //converts the length in tiles to length in Game Pixels and
stores 1it.

offset = ©; //counter used to store how far the level has scrolled

statics = []; //statics, dynamics and collectibles are 3 arrays

dynamics = []; //used to store the 3 different possible types of objects in the
game.

collectibles = []; //read more on these three arrays below.

background = background; //These two properties store the background
foreground = foreground; //and foreground given to the constructor function
scrollLock = false; //this property is used to stop the level from scrolling
when set to true, 1f you so require.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 33 of 143

https://github.com/ChilliByte/CAGE/wiki/Images

index = game.levels.length-1;

static objects are objects which do not move relative to the co-ordinate system. They are
not updated every frame, and neither are they informed when interacted with, unless
another module specifically targets them.

dynamic objects move between frames, be they enemies, platforms, or projectiles. They are
updated every frame, and they are informed when interacted with, so that the objects can
interact. All dynamic objects call Level.colcheck() to check for collisions.

collectible objects are also updated every frame, but they do not collide with anything,
and their update function checks for collisions with players and nothing else. This could be
changed by modifying collectibles.js or writing a custom module, if the user requires it.

Type Updated every Checks for Informed of
frame? collisions? collisions
statics No No No
dynamics Yes Yes Yes
collectibles Yes Only with Players No
by default

Level Object Methods:

add(...args)
colCheck(obj)
draw()

reset()

scroll(x)
update(multiplier)

LevelObject.add(. . .args)

Takes a list of Game Objects as arguments, and if they are of a valid type(static, dynamic, or
collectible), adds them to the relevant arrays in the LevelObject, if an object is of an invalid
type, it outputs an error to the console with the offending object, but continues adding

objects to the scene.

It is an example of a variadic function, that is a function which can take a variable number of

arguments.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 34 of 143

Note: While technically all javascript functions are variadic, LevelObject.add() is the only one |
have written which will actively handle extra arguments. Passing extra values to any other

function will simply cause those arguments to be discarded.

The LevelObject.add(...args) function contains the following code:

add(...args) {
for(var i in args) {
var obj = args[i];

if(obj.constructor.type == "static") {
this.statics.push(obj);

} else if(obj.constructor.type == "dynamic") {
this.dynamics.push(obj);

} else if(obj.constructor.type == "collectible") {
this.collectibles.push(obj);

} else {

console.error("Error adding to scene: object", obj,"is not of a
valid type");
}
}
}

Looking at this function lets us talk about three key areas:

e The ...args syntax
e The this syntax

e The difference between console.error(error) and throw error
The ...args syntax

The add function needs to be able to take a variable number of arguments, as users
may decide to add 1,2,5,10 or even 100 different things to a scene at one time, and it is
inefficient to call the add method every time they wish to add to a scene. This is solved
by the use of the rest parameter. The leading ellipsis is called the rest parameter in
javascript, and tells the interpreter to store all arguments given to the function in the
succeeding parameter as an array, in this case, in the parameter args. This array can
then be iterated through, and its values can be processed. Here, | simply look at the
type of each object, and push it to the relevant array within the LevelObject the
method was called upon. This is done using the this syntax.

The this syntax

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 35 of 143

These methods are all called on an instance of the Level class, for example:

levell.add(
new Platform(©,10,40,10,dirt)

The add method, however needs access to the levell object in order to actually add the
parameters to their relevant arrays. The this keyword returns levelil, within the scope
of add, meaning that the LevelObject does not need to be passed in as an argument,
making the code the user writes easier to read.

this.statics.push(obj);

Console.error vs throw Error
| go more into depth on errors below, but as this is the only instance of a console.error
call, I speak about the differences between the two approaches here.

These are both used to tell the programmer than an action they have attempted is
invalid, even if it is programmatically valid. For example, passing “3" as a string into a
while loop is technically valid (explained below) but evidently does not make sense. This
is where a programmer may wish to check the the type of the parameter, and if it is
invalid, they should output an error to the console.

This is normally achieved with the throw keyword, which will output an error to the
console and stop running the current script, be it a method, procedure or the entire
program.

Example:

throw “DependencyError: Module platform requires module box to run”;

However, there may be occasions where an error needs to be caught, but the code
should keep running. | needed this for the add function, in case an invalid object was
passed to it. If an invalid object was given, it should be discarded and an error should be
output, but the code should keep on trying to add the rest of the items. While
traditionally this sort of behaviour is implemented with a try catch structure:

try {

} catch(e) {
console.log(e)

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 36 of 143

This would not work for the add function, as there is nothing programmatically wrong
with attempting to push an invalid object to the level, as arrays can contain any type of
data. Running the code with a try catch loop would just cause the object to be added to
an array or to be discarded. The user would not what happened to the object and would
assume it was added correctly, and unexpected behaviours could occur within their
game.

This could be fixed by adding throw statements within the try statement, but this would
make the code cluttered as the try catch statement would have to run every time the
code loops, that is,once for every object added, of which there may be hundreds.

console.error solves this problem. It can be used precisely in the same way as the
throw keyword, but it does not cause the interpreter to stop running the add function. It
also, coincidentally, is a variadic function, and will output all of the arguments given to it
to the console.

console.error("Error adding to scene: object", obj ,"is not of a valid
type");

obj is passed as an argument rather than concatenated into the string so that the user
can inspect its properties in the console.

- B %
[w Elements Console Sources Network Performance Memory Application Security Audits » 02
® | top v | Filter Verbose ¥ ol

Console was cleared VM256:1

undefined
» var x = {x:"This is not a valid Game Element"};
undefined
> levell.add(x)
® pError adding to scene: object »0Object {x: "This is not a valid Game Element"} is not of a valid level.js:27
type
undefined

console.error(“Errar: " + x)

© pError: [object Object] VM320:1
undefined
> |
Console Rendering X

3 | 21:39 © ¥ @ GB ,‘1-‘ i
A

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 37 of 143

LevelObject.colCheck (obj)

Takes a Game Object, obj, and checks for collisions between any of the
LevelObject.statics, or any of the LevelObject.dynamics. It returns an array of
directions (either "u","d","1" or "r"), and after each direction, the name of the type of
object it collided with. Any dynamic objects obj collides with will have their collision
methods called with obj as an argument.

The actual mathematical collision detection is done by Box.colCheck(obj1,0bj2); , this
method simply loops through the level and checks obj with everything in the stage. |
document Box.colCheck later,

LevelObject.draw()

Calls the draw() method of, in order: LevelObject.background, LevelObject.statics,
LevelObject.dynamics, LevelObject.collectibles, and LevelObject.foreground

The code for this function follows this pattern:

draw() {
this.background.draw(this.offset);
var i = this.statics.length;
while(i--) {
this.statics[i].draw();
}

//Loops through this.dynamics and this.collectibles the same way.

While the method itself is uninteresting, | think this is an appropriate time to discuss the
while(i--) construct.

i=3
while(i--) {
}

While a more traditional Javascript for loop would be more human readable, i have written
my loops in this fashion for speed reasons, which are discussed in this StackOverflow
answer: http://stackoverflow.com/a/5349485/1707126. While there are marginally faster
methods of looping, they require more variables and checks, meaning more memory is
needed to run them. The reason | need to focus on speed is that there are many of these
loops, at least ten in the level class alone, all of which loop through possibly hundreds of
objects depending on the level, and this is done every frame, of which there are 60 per
second. That means | would need to iterate through around 1000 objects in 16.7
milliseconds.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 38 of 143

http://stackoverflow.com/a/5349485/1707126

The way this loop works is due to Coercion. The while loop tries to evaluate the expression

in the brackets as a boolean value, and it will coerce, or Typecast, the returned variable into
a boolean if it is not one already. This also relies on the fact that in Javascript, O is a falsy
value. That is, when you convert the integer 0 to a boolean, it evaluates to false, whereas any
other number evaluates to true

The example loop also requires the decrementation operator to function as well, which will
return the variable, and then decrease it by one.

These three all combine together so that every time the condition is evaluated, something
like this happens

Check conditional
wj__»

i returns 3

3 evaluates to true
Decrement i //i = 2
Loop to start
//Once i = 0@

Check conditional
w“j__»

i returns 0

0@ evaluates to false
Decrement i
Continue program

It is a difficult concept to grasp if you are new to Javascript, but it is useful as it requires very
little code and is very fast compared to the traditional for loop.

LevelObject.reset ()

Scrolls the level object back to the start, and then loops through dynamics and calls each
object’s reset() method.

LevelObject.scroll (x)

Loops through statics, dynamics, and collectibles and scrolls them by decreasing each
objects x co-ordinate by x. Increments LevelObject.offset by x, before calling
Player.scroll(x);

i = this.collectibles.length;
while(i--) {
this.collectibles[i].x -= Xx;

}

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 39 of 143

this.offset += x;
Player.scroll(x);

The x value of each game object is decreased in order to move them to the left, but the
offset is increased as the “camera” is moving in the positive x direction

LevelObject.update (multiplier)

This method first calls the update(multiplier) methods for all dynamic and collectible
objects in LevelObject, before running code to check if the level should be scrolled, and

handling level changing if the player is off screen. The code for this method is more or less
self explanatory, and is shown below

update(multiplier) {
//Update all the entities that may have changed
var i = this.dynamics.length;
while(i--) {
this.dynamics[i].update(multiplier);
}

i = this.collectibles.length;

while(i--) {
this.collectibles[i].update();

}

//Get the rightmost player

var lead = Player.getlLeader();

//If they are: moving right, and in the center of the screen and not
at the end of the level, and the lLevel 1is not scrolllLocked, scroll the
Level Lleft

if(

(lead.vX > 9.1) && (lead.
(this.offset < (this.len

) {
this.scroll(lead.vX);

}

//If they are moving Lleft, and in the center of the screen and not
at the start of the Llevel, and the lLevel 1is not scrollLocked, scroll the
Level right

if(

X

> 18*u) &&
(tilesX*u))) && (!this.scrolllLock)

(lead.vX < -0.1) && (lead.x < 17*u) &&
(this.offset > 9) & (!this.scrolllock)

) {
this.scroll(lead.vX);

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 40 of 143

//Make sure the lLevel 1is not scrolled past its max and minimum
if(this.offset < 0) {
this.scroll(-this.offset);
}
if(this.offset > this.len - tilesX*u) {
this.scroll((this.len - (tilesX*u)) - this.offset);

//Handle Llevel switching

if(lead.x > tilesX*u) {
Player.moveAll(1,10);
currentlLevel++;

}

if((lead.x < @) && (currentLevel > 0)) {
Player.moveAll((tilesX-1)*u,10);
currentLevel--;

}

if(currentLevel >= game.levels.length) {
currentlLevel = 0;

box.js

box.js is the most basic module, from which all of the other modules inherit properties.
It implements a rectangle and a collision detection algorithm, and is used to check
collisions between objects.

//Push "box" to the List of modules included
modules.push("box");

//Define the box Class
var Box = class Box {
constructor(x, y, width, height, solid) {
this.x = x*u;

this.y = y*u;
this.h = height*u;
this.w = width*u;
this.s = solid;

}

draw() {
c.fillStyle = "green";

Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 41 of 143

c.fillRect(this.x,this.y,this.w,this.h);
} //code continues

The class is not intended to be added to the scene, and as such, it is missing a Tile
property for drawing. Instead, modules that build on it govern how it is drawn. The x
and y properties are used to position the box within the level, and the w and h
properties set the width and height of the box, respectively. The solid property is used
to control how the box behaves when collided with.

//Collision algorithm from somethinghitme.com
static colCheck(a,b) {
// get the vectors to check against
var vX = (a.x + (a.w/ 2)) - (b.x + (b.w / 2)),
v¥ = (a.y + (a.h / 2)) - (b.y + (b.h / 2)),
// add the half widths and half heights of the objects
hWwidths = (a.w / 2) + (b.w / 2),
hHeights = (a.h / 2) + (b.h / 2),
colDir = null;
// 1f the x and y vector are less than the half width or half height,
they we must be inside the object, causing a collision
if (Math.abs(vX) < hWidths && Math.abs(vY) < hHeights) {
// figures out on which side we are colliding (top, bottom, Lleft,
or right)
var oX = hWidths - Math.abs(vX),
oY = hHeights - Math.abs(vY);
if (oX >= oY) {
if (vy > 0) {

colDir = "t";
//If the second item is solid, move the first outside of it.
if (b.s) {
a.y += oY;
a.vy = 0;
}
} else {
colDir = "b";
if (b.s) {
a.y -= oY,
a.vy = 0;
}
}
} else {
if (vX > 0) {
colDir = "1";
if (b.s) {

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 42 of 143

a.x += oX;

a.vX = 0;
}
} else {
colDir = "r";
if (b.s) {
a.Xx -= 0X;
a.vX = 0;
}
}
¥
}
return colDir;

}
};

| modified this collision detection algorithm from
http://www.somethinghitme.com/2013/04/16/creating-a-canvas-platformer-tutorial-part
-tw/ | added the conditionals to only move the object out of the other if the object was
solid. | use it to check for collisions between Game Objects. | used this algorithm rather
than writing my own as | needed a fast, concise algorithm as this function would be run
many times per frame, perhaps hundreds, and all of the condition-based algorithms |
designed were too slow and inefficient for the game to run properly.

Box.colCheck(a,b); is a static method. Static methods are methods of a class, rather
than instances of a class. | decided to make this a static method as collisions may be
checked between objects that do not inherit the Box Class, and making the method
static makes it globally accessible.

projectiles.js

Projectiles are boxes that can move. The code for this class below and | will be analysing
it in detail as there are multiple constructs that are repeated across many modules.

if(modules.indexOf("box") == -1) {
throw "DependancyError: Module box is required for Module projectile";
} else {

modules.push("projectile");

var Projectile = class Projectile extends Box {
constructor(x,y,height,width,vX,vY,solid) {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 43 of 143

http://www.somethinghitme.com/2013/04/16/creating-a-canvas-platformer-tutorial-part-tw/
http://www.somethinghitme.com/2013/04/16/creating-a-canvas-platformer-tutorial-part-tw/

super(x,y,height,width,solid);
this.vX = vX;
this.vY = vY;

}

move(multiplier) {
this.x += this.vX * multiplier;
this.y += this.vY * multiplier;
}
}s
Projectile.type = "dynamic";
}

console.log("Projectile.js Loaded");

The aspects of this module | want to talk about, before | discuss how the module works
in detail, are:

Module dependency management
Inheritance

Multipliers

Class properties

Module Dependency Management

Inmain.js, a global variable named modules is defined, which is an array of strings
which | use to check for dependencies. Every time a module is loaded, it pushes its
name to the modules array. This array is then searched by other modules when they are
loaded to ensure all the modules they depend on have been loaded.

For example, the box module will push “box” to modules. Then, when projectiles
begins loading, it will check modules for the “box” string, and if it is returned, it will
continue loading. It checks for the presence of these strings using the
Array.index0f(x) method, which will return the position of x within Array, or -1 if itis
not found. The throw keyword, which | discussed within level.js is used to make sure
that the code terminates and alerts the user that they are missing a module, else their
code would silently fail and they would have to spend time looking for the error.

Inheritance

The projectile module inherits all of the properties of the box class, and this is achieved
through the use of the extends keyword, along with the super () function. The use of
inheritance means that | do not have to define the properties over and over, | can
simply pass them to the parent to deal with them, meaning that within projectile. js, |
can write code that focuses on what makes projectiles different to boxes. The extends
keyword is used to indicate which class the current class inherits properties from, and
the super() function generates an object of this parent class and returns it so that the

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 44 of 143

child constructor can continue modifying it.

Example:

new Projectile(10,10,1,1,5,0,true);

constructor(x,y,height,width,vX,vY,solid) {
super(x,y,height,width,solid);
this.vX = vX;
this.vY = vY;

Multipliers

The multiplier value from game. js is used to move the projectiles depending on the
speed of the game and the value of multiplier.

this.x += this.vX * multiplier;

If the game is running at 30fps instead of 60, the value of multiplier will be 2, and the
projectile will move twice as far in that frame as it normally would.

Class Properties

ES6 does not actually implement classes as other languages have, and as such, classes
can be given properties much like regular objects can, and | use this to denote the type
of each module. This is used by LevelObject.add() in order to make sure only valid
objects are added to the scene.

Projectile.type = "dynamic";

This property is read by the add method to make sure that all Projectiles are added to
the dynamic array.

if(obj.constructor.type == "dynamic") {
this.dynamics.push(obj);
}

obj being the object being added, obj. constructor being the object’s class, and
obj.constructor.type returning the type property we just set.

The move() function

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 45 of 143

This function simply moves the projectile across the screen depending on its x and y
velocity, and depending on the frame rate of the game. This process is called iterative
integration, as | am iteratively integrating the player’s velocity to give the player's new
position. Acceleration is achieved by changing the player's velocity between frames.

player.js

Player.js is a core module that implements a platformer Player class. This class depends
on the Projectile and Input modules.

Players are added to the Game Object every time they are instantiated by their
constructor:

new Player(1,1,{left:65,right:68,up:32},Sprite);

This will spawn in a Player at (1,1), with the controls A, D and Space for Left, Right
and Jump respectively. The numbers in the third argument correspond to keyboard
keycodes. Spriteis aPlayerSprite defined in sprites.js.|documentinputs and
images later.

Player Object Constructor

constructor(x,y,controls,sprite)

The player constructor takes in four arguments: x, y, controls, sprite.

e xand y are coordinates, in u, where the player is initially spawned. u is defined
inmain.js as the number of pixels per tile.

e controls is an object which is used to assign keys to the player. By default, it
should have the properties left, right and up, though other modules may require
users to add extra keys to the controls object, for example, switches.js
requires an open key to be added in order to trigger the switch.

e spriteis used to draw the player. It can be any valid Sprite, but not a Tile. |
discuss images later, but briefly, it is an ImageObject that is drawn at the player’s
location every frame.

Player Object Properties
Properties unique to the Player class are:

controls
vXmax = (1/6)*u
v¥max = (1/4)*u
friction

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 46 of 143

isJumping

sprite
health
playerNumber

Player Object Methods

checkDir(dir)
checkKeys(multiplier)
draw()

hit(damage)

kill()
update(multiplier)

PlayerObject.checkDir (dir)

Check the direction of every collision, and the type of object the Player has collided with,
and changes the player's values depending on the values within dir. dir is an array of
values returned by LevelObject.colCheck(obj).

PlayerObject.checkKeys (multiplier)

Checks which keys are pressed and moves the player depending on the value of
multiplier. If the left/right key is pressed, and the players x velocity is less than the
maximum velocity, it will increase the player's x velocity.

If the up key is pressed, and the player is not jumping, the players y velocity is decreased
(increased in the up direction as (0,0) is the top left corner) and
PlayerObject.isJumping is set to true.

The function then applies friction and gravity to PlayerObject.vX and vY
respectively, in order to allow PlayerObject.move() to move the player appropriately.

PlayerObject.draw()

Runs PlayerObject.sprite.draw() and passes it the current state of PlayeroObject.
See Images for more.

PlayerObject.hit (damage)

Decreased PlayerObject.health by damage, and if health falls below o, calls
PlayerObject.kill();

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 47 of 143

PlayerObject.kill()

Called when the player falls offscreen or health falls below zero. First calls reset() on
the current LevelObject, before resetting PlayerObject's x, y, w, h, vX, vY, and health
to the default values. If users wished to change these values they need to modify the
values within this function.

PlayerObject.update (multiplier)

This is the master function used to update the player. It follows this algorithm:

Check if the player has fallen below the screen and kill the player if it has.
Check which keys have been pressed using PlayerObject.checkKeys ()
Move the player using the Projectile classes .move() method

Fetch a list of what the player has collided with, using the Level classes
.colCheck(obj) method

5. Modify the player depending on what it has collided with, using
PlayerObject.checkDir();

PN =

Code:

update(multiplier) {
if(this.y > tilesY*u) {
this.kill();
return;
}
this.checkKeys(multiplier);
this.move(multiplier);
var dir = game.levels[currentLevel].colCheck(this);
this.checkDir(dir);

Update is a polymorphic routine, that means more simply, all dynamic objects have an
update() method, but each runs different code. This is important it means | can simply
call update() on all game elements, and the specifics on how to update them is handled
within the class.

Player Class Static Methods:

static drawAll()
static getLeader()
static moveAll(x,y)

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 48 of 143

static scroll(x)
static updateAll(multiplier)

Player.drawAll () ;
Loops through all players and calls their draw function.

Player.getLeader() ;
Loops through all players and returns the rightmost player. It does this by comparing x
coordinates and the PlayerObject with the highest x coordinate is returned.

Player.moveAll (x,y) ;
Loops through all players, and sets all their x coordinates to x*u and y coordinates to
y*u

Player.scroll(x);
Loops through all players and decreases their x coordinate by x, moving them to the
left by x game pixels.

Player.updateAll (multiplier) ;

Loops through all players and calls their update() method, passing in multiplier as
an argument.

input.js
Input.js handles how mouse and keyboard events are handled by the game:

modules.push("input");

window.addEventListener("load",function() {
canvas.addEventListener("mousedown", CanvasClickHandler, false);
canvas.style.zIndex = 1;

1)

function CanvasClickHandler(e) {

function getPosition(event) {
evX = event.x;
evY = event.y;
evX -= canvas.offsetlLeft;
evY -= canvas.offsetTop;
return {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 49 of 143

canvasX: evX,

canvasY: evy,

screenX: event.X,

screenY: event.y,

gameX: tilesX * u * evX/window.innerWidth,
gameY: tilesY * u * evY/window.innerHeight

};

document.body.addEventListener("keydown", function(e) {
if (('keys[27]) && (e.keyCode == 27)) {
if(!game.paused) {
game.pause();

pause.style.display = "block";
} else {
game.play();
pause.style.display = "none";
}
}
keys[e.keyCode] = true;
1

document.body.addEventListener("keyup", function(e) {
keys[e.keyCode] = false;
3

console.log("Input.js Loaded");

Fetching Keyboard Events

When a key is pressed, the global keys array is updated with a true value at
keys|[keycode]

Keycodes are numbers assigned to keys and you can find these using keycode.info
For example, the D key is keycode 68. When D is pressed, keys[68] returns true.

If the key has never been pressed, undefined is returned, else false, if the key is not
currently being pressed.

For example, the keys array will most likely look something like this:
[undefined x 32, false, undefined x 35, true]

This shows that keys[32] (space) was pressed at some point in time, and keys[68] (d)
is currently being pressed. Keypresses are usually checked with code similar to this

if(keys[obj.controls.right]) {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 50 of 143

http://keycode.info/

}

Where obj.controls.right is an integer corresponding to a keycode. This code is
another example where Javascript's coercion, or typecasting, is useful, as the if()
statement automatically converts the undefined value to false, so that we do not need
to fill the array with falses, and neither do we need to check if the value is undefined, it
is all handled by the compiler.

The boolean values for each key are set using a keydown/keyup event listener:

document.body.addEventListener("keyup", function(e) {
keys[e.keyCode] = false;
}s

When one of these events occur, they are added to the event queue, and then handled
by the interpreter once the render() function terminates. This gives nicer, less obtrusive
code, but it does mean input lag of up to 1 frame is possible, though under normal
operation, this should not be noticeable at it would be 16/17 milliseconds between
frames.

The keydown event listener also has a pause function hardcoded into it using the
escape key, meaning that in the event of a game crashing, or if the player simply wishes
to leave the game, they can press this key to leave. While | considered adding a
“game.pauseButton” property, | decided against this as it could cause confusion with
players, as different games would inevitably choose different pause buttons. This
module, of course, can still be changed by users, but this means that novice
programmers are less likely to change this setting.

document.body.addEventListener("keydown", function(e) {
if ((!keys[27]) && (e.keyCode == 27)) {
if(!game.paused) {
game.pause();

pause.style.display = "block";
} else {
game.play();
pause.style.display = "none";
}
}
keys[e.keyCode] = true;
})s

Pause is an ID to a HTML Element, which is displayed when the game is paused.
Javascript fetches a list of element IDs and creates global variables for each so that they
can be accessed without the document.getElementById() method.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 51 of 143

Fetching MouseDown Events

The input modules adds a method, getPosition(e) which returns an object of [x,y]
values when the canvas is clicked. The CanvasClickHandler () function is called every
click, and is used to define how the click event should be managed

getPosition(e) returns an object with the following properties: (comments wrap to
two lines)

screenX // Location where pressed on the screen, x

screenY // and y. Depends on client display

canvasX // Location on canvas where pressed on the canvas. Resolution
// equal to screenX and Y, but offset

canvasY // Depending on client display.

gameX // Location of click in game pixels

gameY // Independent of client screen

Example Use:

function CanvasClickHandler(e) {
var coords = getPosition(e); // e contains click event
game.players[0].x = coords.gameX; // Moves player 1 to the lLocation
game.players[0@].y = coords.gameY; // of the click in game.

images.js

images.js implements Tiles and Sprites, collectively referred to as ImageObjects
for the game to use to render objects.

ImageObject types

There are 7 image types of image objects

Background
BlockColTile
BlockColSprite
RepeatingTile
Sprite
SpriteSet

Tile

These can be divided into 2 categories: Tiles and Sprites.

Tiles are drawn at custom positions with varying sizes.
Sprites are usually drawn at a fixed position in the level

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 52 of 143

Tile

Tiles take a filepath, and an cx, cy, cw, ch, used to crop the image for the tile. Their
draw() method takes an x, y, w, h to draw the image. The draw() method stretches the
image to the correct size if necessary. Both Tiles and Sprites use the Canvas 2D context
drawlmage method:

draw(x,y,w,h) {
c.drawImage(this.img,this.cx,this.cy,this.cw,this.ch,x,y,w,h);

//this.img is a HTML Image Object defined in the constructor function

constructor(url,cx,cy,cw,ch) {
this.img = new Image();
this.img.src = url; //Loads the image from url into this.image

Sprite

Sprites take a filepath, cx, cy, cw, ch, x, y, wh and offsetFactor The c values are used
to crop from a source image, the x, y, w, and h parameters define where in the level the
sprite will be drawn, and how big. offsetFactor determines the rate at which the sprite
scrolls, in case the user wishes to implement parallax. An offsetValue of 0 means the
sprite does not scroll with the level, and a factor of 1 means the sprite and level scroll
the same amount. Any real value is valid, but values between 0 and 1 are typical.

BlockColSprite

Creates a sprite of a solid colour. Accepts any valid CSS colour as a string.
BlockColSprite.draw() functions the same way as Sprite.draw()

BlockColTile

Creates a block colour tile. Accepts any valid CSS colour as a string, functions the same
as a regular tile when drawing. Both BlockColSprite and Tlle use the Canvas 2D
Context drawRect () function

draw(x,y,w,h) {
c.fillStyle = this.col;
c.fillRect(x,y,w,h);

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 53 of 143

RepeatingTiles

RepeatingTiles extend the base Tile class by drawing a repeating pattern. This may
be useful for large objects. The constructor method takes a filepath to the image you
wish to draw. The image cannot be cropped or resized for speed reasons. Repeating
Tiles are slow to draw, so where possible, users should avoid them in favour of
Background or Tile images. RepeatingTiles are drawn in the same way as regular
Tiles

draw(x,y,w,h) {
c.translate(x,y);
var style = c.createPattern(this.img, "repeat");
c.fillStyle = style;
c.fillRect(0,0,w,h);
c.translate(-x,-y);

The repeating tile method moves the canvas’s origin to the top left corner of the object
to draw, before creating a repeating pattern, drawing it from the (new) origin to the
required dimensions, before moving the origin back to the top left corner of the canvas.
The c.createPattern is the slowest step of this algorithm, and with multiple repeating
tiles easily takes 50-60% of the render loop’s time.

SpriteSet

Returns an objects with property layers, which contains an array of SpriteObjects
provided to the constructor function

Background

These are SpriteSets with a draw method. These are passed to LevelObjects to draw
behind and infront of the level.

How to use images

Most game elements will take in a Sprite or Tile as an argument, and every frame, the
objects .draw() method will call the ImageObjects draw() method. Due to this, users
should define these objects in sprites.js as variables so that they can reuse the same
ImageObject multiple times. For example:

var dirt = new RepeatingTile("assets/dirt.png");

This way, if they want to have more than one Platform with the dirt texture, you can
use the dirt variable twice:

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 54 of 143

levell.add(
new Platform(©,18,30,2,dirt),
new Platform(30,17,30,3,dirt)

)

As you can see, we did not need to pass in new RepeatingTile() twice. Aside from
being nicer to read and write, this is also crucial to the running the game, as users will
inevitably have hundreds of platforms once they start writing their game, and calling
the new RepeatingTile() method that many times will effect performance.

Backgrounds

Backgrounds are created in a similar way. Users may either define background layers as
sprites, and pass them to an array, or they can simply create them all within an array,
then pass the array to the Background() constructor as so:

var levellBg = new Background([
new Sprite("assets/sky2.png",0,0,100,20,0,0,10000,2000,0.2),
new Sprite("assets/skyl.png",0,0,40,20,0,0,4000,2000,0)

1);

Note: The topmost sprite is rendered last. This is due to the fact that the while-based for
loop | mentioned earlier loops from the end of the array to the start.

Note: Backgrounds only except Sprite or BlockColSprite objects. Attempting to draw
Tile elements will fail as no parameters are passed to the drawing function.

These backgrounds are passed to the Level constructor when creating new levels. They
will be drawn both behind and in front of the level. To add levellBg to levell, it needs
to be passed to the level constructor, like so:

var levell = new Level(60,levellBg,noFg);

As you can see, | passed "noFg" to the constructor as | did not want a foreground on this
level. There are three of these "Invisible Sprites" which | document below:

Invisible Sprites

These sprites do not render anything. they are called noBg, noFg, and noTile, all of
which link back to one object:

{draw: function() {}}

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 55 of 143

All arguments passed to it are ignored, and no canvas operations occur. It simply
terminates as soon as it is run.

PlayerSprites

A PlayerSprite ImageObject takes a filepath and a data object in its constructor, and
these are used to render the Player depending on its current state, The data object has
many properties, which are:

sw: Sprite Width

sh: Sprite Height

drx: Falling, Facing Right,X Co-ord
dry: Falling, Facing Right,Y Co-ord
dlx: Falling, Facing Left,X Co-ord
dly: Falling, Facing Left,Y Co-ord
urx: Jumping, Facing Right,X Co-ord
ury: Jumping, Facing Right,Y Co-ord
ulx: Jumping, Facing Left,X Co-ord
uly: Jumping, Facing Left,Y Co-ord
lbx: Skidding, facing left, X Co-ord
lby: Skidding, facing left, Y Co-ord
rbx: Skidding, facing right, X Co-ord
rby: Skidding, facing right, Y Co-ord
lix: Walking Left, Frame 1, X Co-ord
11y: Walking Left, Frame 1, Y Co-ord
12x: Walking Left, Frame 2, X Co-ord
12y: Walking Left, Frame 2, Y Co-ord
rix: Walking Right, Frame 1, X Co-ord
rly: Walking Right, Frame 1, Y Co-ord
r2x: Walking Right, Frame 2, X Co-ord
r2y: Walking Right, Frame 2, Y Co-ord
slx: Standing, Facing Left, X Co-ord
sly: Standing, Facing Left, Y Co-ord
srx: Standing, Facing Right, X Co-ord
sry: Standing, Facing Right, Y Co-ord
frn: Frame Number

afn: Animation Frame Number

These can be accessed in the following way: PlayerSpriteObject.d.PropertyName if
you need to. If you simply need to hookup your spritesheet to the existing animation
engine, simply get the x and y co-ordinates of the relevant frames, and assign them to
the above properties. The PlayerSpriteObject.draw() method will handle the
animation.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 56 of 143

Modifying the Animation Function If users wish to add more frames for the animation,
they need to modify the PlayerSpriteObject.draw() function. This will require a
thorough understanding of Javascript and CAGE, and as such is restricted to the more
advanced users.

The process for adding animation frames involves:

e Addthe X andY coordinates of the frames you want to add to the data object
e Add a conditional for when you want the frame to display to the
PlayerSpriteObject.draw() function. For example:

if(player.x == 300) {

c.drawImage(this.img,this.d.1x,this.d.ly,this.d.sw,this.d.sh,player.x,pl
ayer.y,player.w,player.h);
return

Mob Sprites

MobSprites are not passed to mobs, which is different to all other images. Instead they
are passed to a static MobSprite.draw() method, which cannot be modified yet and
handles drawing mobs. To skin their own mobs, users need to match the format of the
sprite file, as this method is not currently flexible.

Collectibles
Collectibles implement objects which can be picked up by the player

var Collectible = class Collectible extends Box {
constructor(x,y,w,h,tile) {
super(x,y,w,h,false);
this.collected = false;
this.t = tile;

}
update() {
var i = players.length;
var dir = "";
while(i--) {
dir = Box.colCheck(this, players[i]);
if(dir !== null) {
this.collect(players[i]);
}
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 57 of 143

collect() {
this.collected = true;

}
draw() {
if (!this.collected) {
this.t.draw(this.x,this.y,this.w,this.h);
}
}

};

The collectible class on its own only implements a non-solid block which disappears
when a player touches it, but other modules can redefine the collect function in order
to add custom behaviours, as can be seen in the Coin and sizePowerUp modules.

Ancillary Modules

The modules | have mentioned thus far are all core modules, as | said in my design
documentation. | have written the following ancillary modules to add functionality to
user’s platformer games:

o Al
e Bouncy Platforms
e Breakable Platforms

e Coins
e C(Crates
e Doors

e |cy Platforms

e Mobs

e Moving Platforms
e Platforms

e Switches

e Size Power Ups

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 58 of 143

Al
The Ai module adds movement to objects, namely Mobs and Moving Platforms. There
are 5 types of simple Al:

NoAI

StaticAl
LinearAl
PatrolAl
VerticalPatrolAI

NoAI ()

function NoAI() {
return;

The NoAI function simply returns as soon as it invokes, leaving the object fully under the
influence of its own momentum and gravity.

StaticAI ()

function Static() {
this.vX = 0;
this.vYy = 0;

}

The StaticAI function is used to fix an object in position relative to the level, in order to
create floating entities

LinearAI()

function LinearAI() {
this.vX = this.aiData.vX;

}

The LinearAI function is used to move an object at a fixed horizontal velocity, and is the
simplest of the non-trivial Als. The aiData object is defined and given to an object when
it is instantiated, and is accessed and modified by the different ai functions when
needed. For the LinearAI, users need to define the horizontal velocity vX the object
should move at, and the object vX is set to this aiData vX every frame, ready for the
Projectile.move() method.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 59 of 143

PatrolAI ()

function PatrolAI() {
if(this.aiData.dir == 1) {
this.vX = this.aiData.vX;
}
if(this.aiData.dir == -1) {
this.vX = -this.aiData.vX;

}

var offset = game.levels[currentLevel].offset;

if(this.x+offset <= this.aiData.x1*u) {
this.aiData.dir = 1;

}

if(this.x+offset >= (this.aiData.x2*u) - this.w) {
this.aiData.dir = -1;

The PatrolAI function is used to move an object between two fixed points, x1 and x2 at
a fixed velocity vX. The aiData object needs the x1, x2, vX and dir properties defined
when it is instantiated. dir is either -1 or 1 and is used to define which direction the
object travels in. The x1 and x2 properties are given in u and are not strict boundaries.
The object may travel past these points by up to 1 vX's worth of pixels. However, the
object will always reverse directions if it is past these two markers.

game.levels[currentLevel].offset is stored in alocal variable in order to prevent
the interpreter having to access the property multiple times.

VerticalPatrolAI ()

function VerticalPatrolAI() {
this.vY = this.aiData.dir * this.aiData.vY;
this.vY -= gravity - 1;

if(this.y <= this.aiData.yl*u) {
this.aiData.dir = 1;

}

if(this.y >= (this.aiData.y2*u)) {
this.aiData.dir = -1;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 60 of 143

Functionally, the VerticalPatrolAI function is identical to the PatrolAI function, but it
moves vertically, however it allows us to discuss some of the finer details of how
ingrained dependencies are within this system.

The VerticalPatrolAT is designed to work with levels that do not scroll vertically, and
as such would likely fail if a different type of level module is used, say one which scrolled
in both the x and the y directions. This is not a direct dependency, as no code is shared
between the Level and AI. Instead, the AT module assumes the Al functions are being
called in a logical context. | could, if | wished, generalised the Level module to add a Y
height and Y offset, but | wished to create a vertically locked platformer, akin to the
original Super Mario Bros.

To stop users mixing modules that should not be used together, | could add simply add
a conditional checking for dependencies, or | could warn the user in the documentation
for the module, however as | currently only have one type of level module, | decided
against this. Instead, in future, | would update this module to be level-implementation
independent, so that the ai would work regardless of game type.

Bouncy Platforms

var BouncingPlatform = class BouncingPlatform extends Box {
constructor(x,y,w,h,tile) {
super(x,y,w,h,false);
this.t = tile;
this.vX = 0;

this.vY = 0;
}
draw() {
this.t.draw(this.x,this.y,this.w,this.h);
}

collision(obj,dir) {
if(dir == "b") {
obj.vY = -0.9*Math.abs(obj.vY);
if(obj.vY < -obj.vYmax) {
obj.vY = -obj.vYmax;

}
if(Math.abs(obj.vY) < 1) {
obj.vY = 0;
}
obj.vY -= gravity;
}
}
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 61 of 143

update() {}
reset() {}
¥

The bouncing platforms are simply non-solid platforms, with a collision function that
updates the colliding objects y velocity. It first reflects the object's vY, before decreasing
it by 10%. Then, if the objects VY is greater than its maximum vY, its vY is set to the
maximum. If the objects vY is very small, it is set to zero to allow the object to come to
rest when the bounce height is low.

Breakable Platforms

constructor(x,y,w,h,tile,data) {
super(x,y,w,h,tile);
this.iy = y*u;
this.d = data || {};

}
reset() {
this.destroyed = false;
this.s = true;
this.y = this.iy;
}
collision(obj,dir) {
if(obj.constructor.name == "Player") {
if(dir == "t") {

this.destroyed = true;
this.s = false;
this.y = tilesY * u;
if(this.d.item) {
game.levels[currentLevel].add(this.d.item);
}
}

}

Breakable platforms are the same as normal platforms, but when touched by the top of
a player, it is destroyed, becomes non-solid and moves offscreen. If the object has a
data object with an item specified, that object is added to the current level.

The logical OR operator is used to check if the property is defined. This uses the same
type coercion | mentioned earlier.

var x = a || b;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 62 of 143

a is evaluated first, if it is not a falsy value, its value is assigned to x, else b is assigned,

regardless of its value

Coins

constructor(x,y,t) {
super(x,y,0.3,0.3,t);

collect(x) {
if(!this.collected) {
var collectedBy = x;
if(!collectedBy.coins) {
collectedBy.coins = ©;

}

collectedBy.coins++;
this.collected = true;

}

The coin modules add collectible items which increase an object's coins count. It sets

this value to zero if it is not already set.

Crates

collision(obj,dir) {
if(!this.isOpened) {
if(obj.constructor.name == "Player") {
if(keys[obj.controls.open]) {
this.destroy();

}

if ((dir == "1") || (dir == "r")){
this.vX = obj.vX;

} else if(dir == "b") {
obj.y = this.y - obj.h;
obj.vY = -gravity;

}

destroy() {
if(!this.isOpened) {
if(this.c) {
this.c.x

this.c.y

this.x;
this.y;

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 63 of 143

game.levels[currentLevel].collectibles.push(this.c);

}

this.isOpened = true;

}

Crate are pushable boxes, which can contain items. The items are released when the
player presses an open button when touching the crate.

Doors
Doors are toggleable platforms, with an open, close, and update() method.

Icy Platforms
Icy platforms are platforms which have a low frictional value. The friction is handled by
the Player class.

Mobs

collision(obj,dir) {
//Dynamic Object has collided with mob
var objType = obj.constructor.name;

if(objType == "Player") {
if(dir == "b") {
this.aiHit();

obj.vY = -1*obj.vYmax;
obj.isJumping = false;

} else {
obj.hit(this.aiData.dmg);
if(dir == "1") {

obj.vY = -obj.vYmax;
obj.vX = obj.vXmax;
obj.isJumping = true;

}
if(dir == "r") {
obj.vY = -obj.vYmax;
obj.vX = -obj.vXmax;
obj.isJumping = true;
}
}
}
if(objType == "Mob") {
if(dir == "r") {
this.x -= obj.w;
obj.x += this.w ;
}
if(dir == "1") {
this.x += obj.w;
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 64 of 143

obj.x -= this.w ;

}

Mobs are moving enemies. They are projectiles with added methods. They move using
the Al functions i described earlier every frame.

When they collide with the left or right side of a player, they call the players “hit”
method, before throwing the player away from the mob. If the mob touches the bottom
of a player, the mobs hit handling method, aiHit is called, and the player bounces off the
mob.

If two mobs collide, they switch places to allow them to pass through each other.

Moving Platforms
Moving Platforms are platforms which move every frame using the behaviours defined
in the Al module.

Platforms
Platforms are solid boxes which the player can walk on. They are the simplest type of
ancillary module.

Switches

constructor(x,y,spritel,sprite2,defaultPosition,entity) {
super(x,y,1,2,false);
this.on = defaultPosition;
this.defaultPosition = defaultPosition;
this.entity = entity;
this.sl = spritel;
this.s2 = sprite2;

These are non-solid boxes, which, when collided with by a player with their open key
pressed, fires the update method of their entity (usually a door). And switches
position from on to off, or vice versa. s1 and s2 are two different sprites drawn
depending on the state of the switch.

Size Power Ups

collect(x) {
if(!this.collected) {
this.x = this.ix + game.levels[currentLevel].offset;
this.y = this.iy;

var collectedBy = x;
if(!this.permanent) {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 65 of 143

this.collected = true;
}
collectedBy.w = this.factor * u;
collectedBy.h = this.factor * 2 * u;
}
}

The size powerup sets the size of the player to factor times the normal size of the
player. The powerup can be constructed to be permanent or collectible using a single
boolean argument. The location of the powerup must be reset as the collision detection
algorithm does not permit intersecting solid object to occupy the same space. (though if
the collision detection algorithm is not checked between two objects they can occupy
the same space)

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 66 of 143

Testing

| have tested my programs in 3 key ways:

e | played through the game and tested each of the game elements to ensure they
worked correctly.

e | had my initial users playtest my game to look for bugs as well as to comment on
its quality.

e | had my initial users build a simple game using a tutorial | wrote in order to
receive feedback on the game engine itself.

Video Testing:

The video | recorded of me testing the game is available as an unlisted YouTube video:

Screenshots:

CAGE Demo Game

A and D to move, Space to jump, Esc to pause

Press to start

The initial menu

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 67 of 143

Play as character 1 Play as character 2

Character Selection Menu

o ® A m ®@ B B © 0 O

Initial Playground Level with character 1

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 68 of 143

Initial Playground Level with Character 2

c ® B m & B
Character 2 pushing a crate

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 69 of 143

Screenshot taken

-
B Show in folder

0 Copy to clipboard

Character 2 and a crate bouncing off a red bouncy platform.

13:27 % @ GB ;“tl
Ak

Character 2 and a crate on a moving platform.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 70 of 143

A vertical flying enemy is caught and moved by the moving platform.

Character 1 on Ice, next to a coin.

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 71 of 143

Screenshot taken

r -
D Show in folder

0 Copy to clipboard

Screenshot taken

r Z
D Show in folder

[0 Copytoclipboard
© q ﬁ = . g :; ° ’ 2 13:30 + @ GB r‘ﬂ
Character one, having touched the 2x size powerup.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 72 of 143

Screenshot taken

-
B Show in folder

0 Copy to clipboard

Screenshot taken

rD 1 Show in folder
[0 Copytoclipboard
o 9 B &= - = -] > E 2 1330 ¥ B GBFﬂ
Character one, having touched the 0.5x size powerup.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 73 of 143

Character 1 at the start of level 1.

o] o) L~] % o ° > 3 1339 -IIGBF.ﬂ

Character 1 jumping across the level, showing how the level does not scroll unless the
player is within the active zone.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 74 of 143

Screenshot taken

-
B Show in folder

[0 Copytoclipboard

The player jumping up a set of stairs, scrolling the level for the first time.

Screenshot taken
Show in folder

[0 Copytoclipboard

o O R E @
The player falling into a pit

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 75 of 143

The player being reset after dying.

” Screenshot taken

B
& Show in folder

= [0 Copytoclipboard

&
@
0]

o 9 B &= - 13:40 ¥ @ GB rT'l

The player reaching the end of the first level

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 76 of 143

Screenshot taken

-
B Show in folder

[0 Copytoclipboard

The player, having moved to the right and offscreen, is transported to the second level.

o EL X

o ® A = ® B B © o O
The player standing above a textured bouncy platform.

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 77 of 143

Screenshot taken

Show in folder

[0 Copytoclipboard

The player, having bounced off the platform does not need to jump to reach the next
platform.

e 6 B2

An example of how bouncy platforms can be used to create interesting game elements.
The player can run from the left to the right without needing to jump at all.

[

°c O A = @&

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 78 of 143

The player on a moving platform.

More moving platforms near the end of the second level. The way these move relative
to each other add a level of difficulty

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 79 of 143

o ® A = & B B © 08
The start of the third level, with a simple horizontal patrol enemy

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 80 of 143

A flying patrol enemy.

The player and an enemy on moving platforms.

Deep Sohelia
CAGE - The Chrome Application Game Engine

2 1346 ¥ O Gaﬂ%l
n

Page 81 of 143

o ® A = & B

The start of the final level

1 13:52 & @ GB [i1Y

The boss, which has released a small patrolling enemy

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 82 of 143

1 1353 w @ e [}
« o oo]

Screenshot taken
Show in folder

Copy to clipboard

2 13:54 & @ GB [i1Y

The boss flies out on the moving platform once the player destroys all the mobs it
throws at them. The flying boss releases 8 more mobs in an attempt to kill the player.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 83 of 143

Game Paused

Press Esc to Resume

1 1855 ncsm
M ‘*.1||

The pause screen, accessed by the Esc key

Screenshot taken
Show in folder

[0 Copytoclipboard

1 13:57 ¢ @ GB [i1}
i

Once the player defeats all mobs, the platform returns to its original position, rises up
and moves back and forth at a higher level. The boss then jumps off and moves back
and forth below, jumping randomly, trying to crush the player.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 84 of 143

The doors to the left and right open when the boss is killed, and the platform stops
moving.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 85 of 143

User Feedback:

Game
Q) What are your first impressions of the game?

Hugh:
The graphics aren’t the best I've ever seen, if I'm honest, but the game is smooth, and there

aren’t any bugs, which is good. | really like how native the app looks. Is the [player] animation
changeable? | think it needs more frames.
You would need to modify the PlayerSprite function, but yes.

Matt:

You're not a Graphics Artist are you? These are poor.

No, I've never really drawn anything before.

I mean as long as users are better at making graphics than you are, | don't see any problems
with the game. The player movement is crisp, the level scrolls well, the boss fight is
challenging, I just wish it was longer.

I'm considering actually making a game using this engine, instead of simply
leaving it online.

I think if you actually put some time into level design and character design, it would be very
good.

Sam:

I enjoyed playing with the features in the playground level, | wish the actual game used more
of the features. Some of the timings of the platforms and mobs could do with some
adjustment, I've been waiting for them to come within range quite a lot, it's annoying,

Aside from my poor game design, does the game run well?

Oh, yes, the game runs very well, there aren’t any frame drops, all the animations are
smooth, the player moves as i expect it to, its pleasing to play, if a little short.

Q) Is there anything you particularly like about the game?

Hugh
I really like the parallax background, even with your graphics it looks very cool.

Matt
The way the level scrolls when you’re on a moving platform is quite nice, | like the way things
scroll relative to you.

Sam
The little playground level at the start is handy, | like the way it sort of throws all of the
features at you so you can experiment with the features of the game before you get into it.

Q) Is there anything you particularly dislike about the game?

Hugh

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 86 of 143

Besides your graphics?

Preferably

I think the animations could be improved, allow game elements have animations, and make
the number of frames and the speed variable.

Matt
The levels are quite short, I'm getting through them in under a minute. | think the game needs
to be longer, there’s not enough content here to fully show off your game.

Sam
The graphics need a lot of work, the player and mobs need more animation frames. The
player moves smoothly, but It accelerates too fast | think.

Q) Are there any features or improvements you would like to see added?

Hugh
It would be good to see more of the modules used in the game, with more levels, better

graphics and longer levels.

Matt
Higher resolution graphics, more levels, and the use of more of the modules you have written!

Sam

I think you need to write more modules, you've made enough to show off your game engine,
but more modules would be very cool, perhaps a powerup that modifies gravity, or cannons,
or enemies that move in more complex ways?

Engine
Q) Can you try following the tutorial. How do you find following it? Is the Engine
Logical and simple to use?

Hugh
Your tutorial is simple enough. Downloading all of the files was annoying but | assume once

the user knows their way around the system they can just copy and modify the DemoApp?
Yes, that was what | intended.

The engine is quite simple to use, even though it does assume basic programming knowledge.
All of the constructors are logically defined, and the system does fit together well, even if the
dependency system isn't the easiest to grasp.

Matt
If I didn’t read into how your game engine works, the downloading files stage of the tutorial
seems kind of meaningless

Sam

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 87 of 143

The graphics need a lot of work, the player and mobs need more animation frames. The
player moves smoothly, but It accelerates too fast I think.

Q) Can you try adding the ice module in, and using it in your level? How was the
process?

Hugh
[Needed no help adding or the module] I think that was a simple enough process, though

perhaps add a little readme.md file onto github with the constructor and its arguments in.

Matt

[Needed help navigating the repository but added module in correctly once located] That
process was simple enough, though perhaps you need to document it in the modules folder
in case someone forgets how to include a script file

Sam

[Needed help including the script file within the index file, but could do all other steps] | think
you need a more in depth tutorial on that process, | have no idea what adding that line to
index.html did. I did find using the module once i added it easy enough.

Q) Do you find the interface easy to use? Are there any improvements | could
make to the system?

Hugh

Yes, it's easy enough to use, though I shouldn’t really need to check the source to learn what
the constructor takes as an argument. You need to add those readme files | mentioned

Matt

Your repo could do with a little explanation of where everything goes together with the
tutorials and the modules, | had difficulty finding where the Ice module was. Aside from that,
i do like the way the constructors work, it makes the level files surprisingly small.

Sam

I think the system is kind of hard to grasp, though | know nothing about web technologies so
perhaps that’s why | struggled. Your documentation is good though perhaps you need a page
with a few links to websites to catch up to the baseline skill level you need to use the engine

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 88 of 143

Evaluation

The aims | set out to complete were:

Create an ES6 based modular 2D game engine

Create a set of demo modules to work with the engine

Create a basic game as a proof of concept of the system working

Create a centralised resource for the game engine, containing tutorials and

documentation on each of the modules | write.

e Create a ES6 inheritance based module structure, utilising polymorphism and
aggregation to create small, lightweight modules that can be used to add
functionality to games.

e Create a sample, single level project aside from the basic game as a project to
demonstrate how to create and edit levels

e | will fully document every method and property of every core module in order to
make the system user friendly and accessible.

e | will add a method of detecting when certain events have occurred in order to
trigger certain user-defined behaviours.

e Write a set of logical constructors for the users to use when creating levels.

And | believe | have met most if not all of these targets. My Engine is 2D, Modular, and
uses ES6. | wrote a set of Object-Orientated modules, which | used to create levels for
my sample game, as well as the demo game level. Both of these are uploaded to a
Github Repository along with all of the modules, and all of the engine code. The
repository also contains documentation for all of the core modules, as well as a brief
explanation of the engine, and a tutorial.

If | were to continue development of this engine, | would likely add many more modules,
write a level editor, and continue expanding my game or even write multiple to show off
the features of the engine.

| would also write more documentation on all of the code, explaining it in more detail.
Perhaps by using a more in-depth documentation system.

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 89 of 143

Appendix

CAGE Files:

background.js

/**

* Listens for the app lLaunching, then creates the window.

*

* @see http://developer.chrome.com/apps/app.runtime.html
* @see http://developer.chrome.com/apps/app.window.html

*/

chrome.app.runtime.onLaunched.addListener(function() {
var windowWidth = screen.availWidth;
var windowHeight = screen.availHeight;
chrome.app.window.create('index.html"', {
id: "mainWindow",
outerBounds: {
width: windowWidth,
height: windowHeight,
left: o,
top: O,
¥
resizable: true,
alwaysOnTop: false,
frame:"chrome”

IoE

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 90 of 143

debug.js

//Get the
var xSpan
ySpan
vxSpa
vySpa
ijSpa
loSpa
1xSpa
fpSpa

HTML elemen
= document.
document.
n = document
n = document
n = document
n = document
n = document
n = document

ts to output debug data to
getElementById("x"),
getElementById("y"),
.getElementById("vx"),
.getElementById("vy"),
.getElementById("ij"),
.getElementById("1o"),
.getElementById("1x"),
.getElementById("fp");

//Output debug data every frame
function debug() {

xSpan.i
ySpan.i
vxSpan.
vySpan.
ijSpan.
loSpan.
1xSpan.
fpSpan.
}

game.js

nnerText
nnerText
innerText =
innerText =
innerText =
innerText =
innerText =
innerText =

g
g

ame.players[0].X;

ame.players[0].y;

game.players[0].vX;

game.players[0].vY;

game.players[0].isJumping;
game.levels[currentLevel].offset;
game.levels[currentLevel].offset + players[@].x;
Math.round(1000/delta);

//Request Animation Frame Shim/Polyfill

(function

O {

var requestAnimationFrame = window.requestAnimationFrame ||
window.mozRequestAnimationFrame || window.webkitRequestAnimationFrame ||
window.msRequestAnimationFrame;

window.requestAnimationFrame = requestAnimationFrame;

NO;

game = {

debug: false,

paused:
levels:
players
hud:[],

true,

L1,
L1,

pause: function() {
game.paused = true;

}s

play: function() {
game.paused = false;

}s

Deep Soheli

a

CAGE - The Chrome Application Game Engine

Page 91 of 143

kill: function() {
render = function() {return null;};
}
s

function render() {
currentTime = new Date().getTime();
delta = currentTime - oldTime;
oldTime = currentTime;
//multiplier = delta/16.6;
multiplier = 1;

if(!game.paused) {
//First update all of the X and Y positions
game.levels[currentLevel].update(multiplier);
Player.updateAll(multiplier);

//Clear The Last Frame
c.clearRect(0, 0, 40*u, 20*u);

//Then Draw everything
game.levels[currentLevel].draw();
Player.drawAll();
HUDElements.drawAll();

if(game.debug) {
debug();

}
//Call the next frame

requestAnimationFrame(render);

console.log("Game.js Loaded");

index.html (default)

<html>
<head>
<title>CAGE Platformer</title>
<link rel="stylesheet" href="style.css" />
</head>
<body>

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 92 of 143

<canvas

<script
<script

<script
<script
<script
<script
<script
<script
<script
<script
<script
<script

<script

id="gameCanvas"></canvas>

src="main.js"></script>
src="game.js"></script>

src="modules/images.js"></script>
src="modules/input.js"></script>
src="modules/level.js"></script>
src="modules/box.js"></script>
src="modules/projectile.js"></script>
src="modules/player.js"></script>
src="modules/platform.js"></script>
src="modules/hud.js"></script>
src="modules/sprites.js"></script>
src="modules/menus.js"></script>

src="levels/basic.js"></script>

<div id="splash" class="menu">
<h1>CAGE Basic Game</h1l>

A and D to move, Space to jump, Esc to pause

<button>Press to start</button>

</div>

<div id=

"pause" class="menu">

<h1>Game Paused</h1>

Press
</div>

</body>
</html>

Esc to Resume

index.html (platformer)

<html>
<head>

<title>CAGE Platformer</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>
<canvas

<script

<script
<script

Deep Sohelia

id="gameCanvas"></canvas>

src="main.js"></script>
src="modules/hud.js"></script>
src="game.js"></script>

CAGE - The Chrome Application Game Engine

Page 93 of 143

<script
<script
<script
<script
<script
<script
<script

<script
<script

<script
<script
<script

<script
<script
<script

<script

<script
<script

<script
<script

<script

<script
<script
<script
<script

src="modules/images.js"></script>
src="modules/input.js"></script>
src="modules/level.js"></script>
src="modules/box.js"></script>
src="modules/projectile.js"></script>
src="modules/player.js"></script>
src="modules/platform.js"></script>

src="modules/mob.js"></script>
src="modules/ai.js"></script>

src="modules/movingPlatform.js"></script>
src="modules/bouncingPlatform.js"></script>
src="modules/ice.js"></script>

src="modules/collectible.js"></script>
src="modules/coin.js"></script>
src="modules/sizePowerUp.js"></script>

src="modules/crates.js"></script>

src="modules/switches.js"></script>
src="modules/doors.js"></script>

src="modules/hudElements.js"></script>
src="modules/sprites.js"></script>

src="modules/menus.js"></script>

src="levels/wlll.js"></script>
src="levels/wll2.js"></script>
src="levels/wll3.js"></script>
src="1levels/wlboss.js"></script>

<div id="splash" class="menu">
<h1>CAGE Demo Game</hl>
A and D to move, Space to jump, Esc to pause

<button>Press to start</button>

</div>

<div id="menu" class="menu">
</br>
<button>Play as character 1</button>
<button>Play as character 2</button>

</div>

<div id=

Deep Sohelia

"pause" class="menu">

CAGE - The Chrome Application Game Engine

Page 94 of 143

<h1>Game Paused</h1>
Press Esc to Resume

</div>

<div id="debug">
X:

Y:

vX:

vY:

isJumping:

Level Offset:

Level X:

FPS:

</div>

<script src="debug.js"></script>

</body>
</html>

main.js (platformer)

//Key Game Variables - see document for definitions
var canvas,c,

tilesX = 40,

tilesY = 20,
pixelsPerTile = 100,

u = pixelsPerTile,
currentTime = 0,

oldTime = 0,

delta = 0,

keys = [],

modules = [],

players = [],
totalModules,
currentLevel = 0,
totallLevels,
normalGravity = 0.01*u,
BoxFriction = 0.9,
IceFriction = 0.97,
gravity = normalGravity;

//Function to initialize game. Finds the canvas, sets its size, and
calls the render lLoop, if levels exist to render.
window.onload = function() {

console.log("The app has loaded.");

reset();

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 95 of 143

canvas = document.getElementById("gameCanvas");

c = canvas.getContext("2d");
canvas.height = tilesY * u;
canvas.width = tilesX * u;

c.imageSmoothingEnabled = false;

totalModules = scriptCount("modules™);
totalLevels = scriptCount("levels");

//If there are level script files loaded, AND if they are added to the

Levels array correctly, start the game.

if((totalLevels > 0) && (levels.length > 9)) {

render();

}
};

//Reset sets the size and position of the Chrome Window.

function reset(){
chrome.app.window.getAl1()[@].outerBounds

chrome.app.window.getAll()[0].outerBounds.
chrome.app.window.getAl1l()[@].outerBounds.

chrome.app.window.getAll()[@].outerBounds

//Loops through the included <script> tages
a folder “type’
function scriptCount(type) {

var len = 0;

.width = screen.availWidth;
height = screen.availHeight;
left = 0;
.top = 0;

and returns all that are in

var scripts = document.getElementsByTagName("script");

for(var i = 0; i < scripts.length;i++) {

if(scripts[i].src.split("/")[3] == type) {

len++;

}
}

return len;

console.log("Main.js Loaded");

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 96 of 143

manifest.json

"manifest_version": 2,
"name": "Platformer",
"short_name": "Platformer",
"description”: "",
"version": "0.0.1",
"minimum_chrome_version": "38",
"icons": {
"16": "assets/icon_16.png",
"128": "assets/icon_128.png"
¥
“app”: {
"background": {
"scripts": ["background.js"]
}
3
"permissions": ["storage"]

}

style.css

body {
height:100%;
width:100%;
background-color:#589fd8;
padding:0;
margin:0;
font-family:Verdana;

canvas {
position:fixed;
left:0px;
right:0px;
top:0px;
bottom:0px;
width:100%;
margin:auto;
z-index:-1;
border:1px solid black;

#debug {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 97 of 143

z-index:0;

bottom:9;

right:0;
background-color:rgba(0,0,0,0.5);
color:white;

position:fixed;

display:none /*inline-block*/;
width:300px;

font-size:1.5em;

.menu {
height:100%;
width:100%;
position:fixed;
left:0;
right:0;
top:0;
bottom:0Q;
display:block;
background-color:#444;
color:#ffffff;
text-align:center;
font-family:Calibri;

.menu button {
all:initial;
height:50px;
width:150px;
background-color:#337733;
color:#ffffff;
text-align:center;
font-family:Calibri;
line-height:50px;
margin:50px;

#splash {
z-index:2;
font-size:-webkit-xxx-large;
padding-top:20vh;

}

#menu {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 98 of 143

z-index:1;

}

#pause {
z-index:0;
opacity:0.9;
font-size:-webkit-xxx-large;
padding-top:25vh;
display:none;

Modules:
ai.js

modules.push("ai");

function NoAI() {

return;

}

function Static() {
this.vX = 0;
this.vY = 09;

}

function LinearAI() {
this.vX = this.aiData.vX;

}

function PatrolAI() {
if(this.aiData.dir == 1) {
this.vX = this.aiData.vX;

}

if(this.aiData.dir == -1) {
this.vX = -this.aiData.vX;

¥

var offset = game.levels[currentLevel].offset;
if(this.x+offset <= this.aiData.x1*u) {
this.aiData.dir = 1;

}

if(this.x+offset >= (this.aiData.x2*u) - this.w) {
this.aiData.dir = -1;

}

}

function VerticalPatrolAI() {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 99 of 143

this.vY = this.aiData.dir * this.aiData.vY;
this.vY -= gravity - 1;

if(this.y <= this.aiData.yl*u) {
this.aiData.dir = 1;
}
if(this.y >= (this.aiData.y2*u)) {
this.aiData.dir = -1;
}
¥

function Boss1AI() {
//drops the door into the arena to stop the player from Lleaving
if(!this.locked) {
doorArray[@].close();
this.aiData.locked = true;
}
//Make sure the Player doesn’t lLeave the arena
if(Player.getLeader().x < 0) {
Player.getLeader().x = 0;

}

//Make sure the Boss can’t jump indefinitely
if(!this.aiData.isJumping) {
this.aiData.isJumping = false;

}

//Locks the levels scrolling once the player is within the arena
if(game.levels[currentLevel].offset == 4000) {
wlboss.scrollLock = true;

}

//controls boss death

if(this.aibData.health === 9) {
doorArray[@].open();
doorArray[1].open();
wlboss.scrollLock = false;
this.kill();
bossPlat.aiData.x1
bossPlat.aiData.x2

41.05;
79.95;

//Initialises the boss battle once the door is Locked
if(this.aiData.stage === undefined && this.aiData.locked) {
bossMob.aiData.stage = 1;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 100 of 143

if(wlboss.dynamics.length > 2) {
wlboss.dynamics.length = 2;

}

setTimeout (function(){
bossMob.aiData.enemies = 1;
bossMob.aiData.dead = 0;

},2000);
}
//Stage 1 of the fight: Spawn a patrol mob
if((this.aiData.stage === 1) && (this.aiData.enemies === 1)) {

game.levels[currentlLevel].dynamics.push(new
Mob(32,16,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:8,dir:-1},function(){
bossMob.aiData.dead++; this.kill();}));

this.aiData.enemies = 0;

}

//0Once the first patrol mob is killed, advance the boss fight

if((this.aiData.stage 1) && (this.aiData.dead === 1)) {
this.aiData.enemies
this.aiData.stage = 2;

}

2;

//Spawn two, faster patrol mobs 1 second apart
if((this.aiData.stage === 2) && (this.aiData.enemies > 0)) {
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(32,16,1,1,PatrolAI,{dmg:5,x1:40.05,%x2:73.95,vX:15,dir:-1},function()
{bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(32,16,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:15,dir:-1},function()
{bossMob.aiData.dead++;this.kill();}));
},1000);
},1000);
this.aiData.enemies = 9;

}

//0nce both of these enemies are dead, advance the boss battle
if((this.aiData.stage === 2) && (this.aiData.dead === 3)) {
this.aiData.enemies = 4;
this.aiData.stage = 3;

}

//Spawn 4 faster patrol mobs 1 second apart
if((this.aiData.stage === 3) && (this.aiData.enemies > 9)) {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 101 of 143

setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(32,16,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir
{bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(32,16,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir
{bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(32,16,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir
{bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(32,16,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir
{bossMob.aiData.dead++;this.kill();}));
},1000);
},1000);
},1000);
},1000);
this.aiData.enemies = 0;

}

:-1},function()

:-1},function()

:-1},function()

:-1},function()

if((this.aiData.stage === 3) && (this.aiData.dead === 7)) {
//Advance the mob stage and make the movingPlatform start moving

this.aiData.enemies = 8;
this.aiData.stage = 4;
bossPlat.aiData.vX = 4;

}

if((this.aiData.stage === 4) && (this.aiData.enemies > 9)) {

setTimeout (function(){

//Pushes 8 new patrol mobs to the Llevel, 750 ms apart

game.levels[currentLevel].dynamics.push(new

Mob(bossMob.x/u,14,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir:-1},f

unction(){bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new

Mob(bossMob.x/u,14,1,1,PatrolAI, {dmg:5,x1:40.05,x2:73.95,vX:20,dir:1},fu

nction(){bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new

Mob(bossMob.x/u,14,1,1,PatrolAIl,{dmg:5,x1:40.05,x2:73.95,vX:20,dir:-1},f

unction(){bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new

Mob (bossMob.x/u,14,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir:1},fu

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 102 of 143

nction(){bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(bossMob.x/u,14,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir:-1},f
unction(){bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(bossMob.x/u,14,1,1,PatrolAI, {dmg:5,x1:40.05,x2:73.95,vX:20,dir:1},fu
nction(){bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob(bossMob.x/u,14,1,1,PatrolAIl,{dmg:5,x1:40.05,x2:73.95,vX:20,dir:-1},f
unction(){bossMob.aiData.dead++;this.kill();}));
setTimeout (function(){
game.levels[currentLevel].dynamics.push(new
Mob (bossMob.x/u,14,1,1,PatrolAI,{dmg:5,x1:40.05,x2:73.95,vX:20,dir:1},fu
nction(){bossMob.aiData.dead++;this.kill();}));
},750);
},750);
},750);
},750);
},750);
},750);
},750);
},2500);
this.aiData.enemies = 9;
}
//0nce all the mobs are dead, return the platform to the right and
//advance the boss battle
if((this.aiData.stage
this.aiData.enemies
this.aiData.stage = 5;
bossPlat.aiData.dir = 1;

4) && (this.aiData.dead === 15)) {
1;

2]

}

//0Once the platform is at its original position, Lift it up, and make
//it patrol over the arena.
if(this.aiData.stage == 5) {
if(bossPlat.x > 3199) {
bossPlat.aiData.vX = 0;
bossPlat.vY = -8;
bossMob.x -= 4;
if(bossPlat.y <= 600) {
bossPlat.vY = 0;
bossPlat.y = 600;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 103 of 143

bossPlat.aiData.vX = 4;
this.aiData.stage = 6;
this.aiData.x1 = 41.1;
this.aiData.x2 71.95;
this.aiData.vX = 10;
this.aiData.dir = 1;

//Make the boss jump off the platform, and patrol the arena, jumping
//randomly .
if(this.aiData.stage == 6) {
if(bossMob.y < 1000) {
bossMob.x -= 4;
}
if((Math.random() < 0.01) && (!this.aiData.isJumping)) {
bossMob.vY = -25;
this.aiData.isJumping = true;
}
//Patrol AI code. function cannot be used as context of "this" has
changed
if(this.aiData.dir == 1) {
this.vX = this.aiData.vX;

}

if(this.aiData.dir == -1) {
this.vX = -this.aiData.vX;

¥

var offset = game.levels[currentLevel].offset;
if(this.x+offset <= this.aiData.x1*u) {
this.aiData.dir = 1;

}

if(this.x+offset >= (this.aiData.x2*u) - this.w) {
this.aiData.dir = -1;

}

}
}

function Boss1Hit() {
this.aiData.health -= 1;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 104 of 143

bouncingPlatform.js

//Depends on module "box"
if(modules.indexOf("box") == -1) {
throw "DependancyError: Module box is required for Module
bouncingPlatform";
} else {
//Push "platform"” to Llist of included modules
modules.push("box");

var BouncingPlatform = class BouncingPlatform extends Box {
constructor(x,y,w,h,tile) {
super(x,y,w,h,false);
this.t = tile;

this.vX = 0;
this.vY = 0;
}
draw() {

this.t.draw(this.x,this.y,this.w,this.h);
}

update() {}

reset() {}

move() {}

collision(obj,dir) {
if(dir == "b") {
obj.vY = -0.9*Math.abs(obj.vY);
if(obj.vY < -obj.vYmax) {
obj.vY = -obj.vYmax;

}
if(Math.abs(obj.vY) < 1) {
obj.vY = 0;
}
obj.vY -= gravity;
}
}
}s5
BouncingPlatform.type = "dynamic";
}
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 105 of 143

box.js

//Depends upon module "lLevel"
if(modules.indexOf("level") == -1) {
throw "DependancyError: Module level is required for Module box";

} else {

//Push "box" to the List of modules included
modules.push("box");

//Define the box Class
var Box = class Box {
constructor(x, y, width, height, solid) {

this.x = x*u;
this.y = y*u;
this.h = height*u;
this.w = width*u;
this.s = solid;
}
draw() {
c.fillStyle = "green";
c.fillRect(this.x,this.y,this.w,this.h);
}

//Collision algorithm from somethinghitme.com
static colCheck(a,b) {

// get the vectors to check against

var vX = (a.x + (a.w/ 2)) - (b.x + (b.w / 2)),

v¥ = (a.y + (a.h / 2)) - (b.y + (b.h / 2)),

// add the half widths and half heights of the objects
hWwidths = (a.w / 2) + (b.w / 2),

hHeights = (a.h / 2) + (b.h / 2),

colDir = null;

// 1f the x and y vector are less than the half width or half height,
// they we must be inside the object, causing a collision
if (Math.abs(vX) < hWidths && Math.abs(vY) < hHeights) {

// figures out on which side we are colliding
//(top, bottom, Lleft, or right)
var oX = hWidths - Math.abs(vX),
oY = hHeights - Math.abs(vY);
if (oX >= oY) {
if (vy > 0) {

colDir = "t";
//If the second item is solid, move the first outside of it.
if (b.s) {

a.y += oY,

Deep Sohelia

CAGE - The Chrome Application Game Engine

Page 106 of 143

a.vy = 0;

}
} else {
colDir = "b";
if (b.s) {
a.y -= oY,
a.vy = 0;
}
}
} else {
if (vX > 0) {
colDir = "1";
if (b.s) {
a.Xx += oX;
a.vX = 0;
¥
} else {
colDir = "r";
if (b.s) {
a.x -= oX;
a.vX = 0;
}
}
¥
}
return colDir;
}
}s

Box.type = "static";
}

console.log("Box.js Loaded");

breakablePlatform.js

//Depends on module "platform", "platform", “lLevel”
if(modules.indexOf("platform™) == -1) {

throw "DependancyError: Module platform is required for Module
breakablePlatform";
} else if(modules.indexOf("player") == -1) {

throw "DependancyError: Module player is required for Module
breakablePlatform";
} else if(modules.indexOf("level") == -1) {

throw "DependancyError: Module level is required for Module

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 107 of 143

breakablePlatform";

} else {
//Push "platform” to List of included modules
modules.push("breakablePlatform");

var BreakablePlatform = class BreakablePlatform extends Platform {
constructor(x,y,w,h,tile,data) {
super(x,y,w,h,tile);
this.d = data;
}

draw() {
this.t.draw(this.x,this.y,this.w,this.h);

}

update() {}

reset() {
if(this.destroyed) {
this.destroyed = false;

move() {}

collision(obj,dir) {
if(obj.constructor.name == "Player") {
if(dir == "t") {
if(this.d.item) {
game.levels[currentLevel].collectibles.push(this.d.item);

}
}
}
}

}s

BreakablePlatform.type = "dynamic";
}
coin.js
if(modules.indexOf("collectible") == -1) {

throw "DependancyError: Module collectible is required for Module
coin";
} else {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 108 of 143

modules.push("coin");

var Coin = class Coin extends Collectible {
constructor(x,y,t) {
super(x,y,0.3,0.3,t);
}

collect(x) {
if(!this.collected) {
var collectedBy = x;
if(!collectedBy.coins) {
collectedBy.coins = 9;
}
collectedBy.coins++;
this.collected = true;
}
¥
}s5

Coin.type = "collectible";
}

collectible.js

//Depends on module "box"
if(modules.indexOf("box") == -1) {
throw "DependancyError: Module box is required for Module
collectible";
} else {
modules.push("collectible");

var Collectible = class Collectible extends Box {
constructor(x,y,w,h,tile) {
super(x,y,w,h,false);
this.collected = false;
this.t = tile;

}
update() {
var i = players.length;
var dir = "";
while(i--) {
dir = Box.colCheck(this, players[i]);
if(dir !== null) {
this.collect(players[i]);
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 109 of 143

collect() {
this.collected = true;

}

draw() {
if (!this.collected) {
this.t.draw(this.x,this.y,this.w,this.h);
}
}
}s

Collectible.type = "collectible";
}

crates.js

//Depends on module "box"
if(modules.indexOf("projectile") == -1) {
throw "DependancyError: Module projectile is required for Module
crate";
} else {
//Push "platform” to List of included modules
modules.push("crates");

var Crate = class Crate extends Projectile {
constructor(x,y,h,w,resettable,contents) {
super(x,y,h,w,0,0,false);
this.c = contents;
this.friction = BoxFriction;
this.isOpened = false;
this.resettable = resettable;
this.initial = {
x: x*u,
y: y*u
}s

draw() {
if(!this.isOpened) {
c.fillStyle = "yellow";
c.fillRect(this.x,this.y,this.w,this.h);

}

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 110 of 143

update(multiplier) {

if(!this.isOpened) {
this.move(multiplier);
this.c.x = this.x;
this.c.y = this.y;
this.vY += gravity;
this.vX *= Math.pow(this.friction,multiplier);
var dir = game.levels[currentLevel].colCheck(this);
this.checkDir(dir);

collision(obj,dir) {
if(!this.isOpened) {
if(obj.constructor.name == "Player") {
if(keys[obj.controls.open]) {
this.destroy();

}

if ((dir == "1") || (dir == "r")){
this.vX = obj.vX;

} else if(dir == "b") {

obj.y = this.y - obj.h;
obj.vY = -gravity;
}
}
}
}

destroy() {
if(!this.isOpened) {
game.levels[currentLevel].collectibles.push(this.c);
this.isOpened = true;
}
¥

reset() {
if(this.resettable) {
this.x = this.initial.x;
this.y = this.initial.y;
this.isOpened = false;
}
}

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 111 of 143

checkDir(dir) {

if(dir.indexOf("Ice") != -1) {
this.friction = IceFriction;
} else {
this.friction = BoxFriction;
}
}
¥
Crate.type = "dynamic";
}
doors.js
//Depends on module "box"
if(modules.index0f("box") == -1) {
throw "DependancyError: Module box is required for Module switch";
} else {

//Push "platform"” to List of included modules
modules.push("switch");

var doorArray = [];
var Door = class Door extends Platform {
constructor(x,y,w,h,tile,defaultPosition,id) {

super(x,y,w,h,tile);
this.isOpen = defaultPosition;
this.s = !defaultPosition;
this.defaultPosition = defaultPosition;
this.id = id;
doorArray[id] = this;

draw() {
if(!this.isOpen) {
this.t.draw(this.x,this.y,this.w,this.h);
}
}

update(){
if(this.isOpen){
this.close();
} else {
this.open();

}
}

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 112 of 143

reset() {
this.isOpen = this.defaultPosition;
this.s = true;

}

open() {
this.isOpen = true;
this.s = false;

close() {
this.isOpen = false;
this.s = true;
}
¥
Door.type = "static"; //Stops door being tested 66x per second.
door.update() 1is called when switch is fired.

}

hud.js

modules.push("HUD");
var HUDElements = class HUDElements {
static drawAll() {
var 1 = game.hudElements.length;
while(i--) {
game.hudElements[i].draw();
}
}
¥

var HUDBar = class HUDBar {
constructor(x,y,w,h,bgcol,textcol,max,getValue) {

this.x = x*u;
this.y = y*u;
this.w = w*u;
this.h = h*u;
this.bgCol = bgcol;
this.textCol = textcol;
this.maxVal = max;
this.getVal = getValue;
game.hudElements.push(this);

draw() {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 113 of 143

var num = null;
if(!game.paused) {

num = this.getVal();
}
if(num !== null) {

var width = (num/this.maxVal)*this.w;
.fillStyle = this.bgCol;
.strokeRect(this.x,this.y,this.w,this.h);
.fillRect(this.x,this.y,width,this.h);
.font = 'S5em Calibri';
.fillStyle = this.textCol;
.fillText(num.toString(), this.x+10, this.y+65);

0o 0o 0 0 0 N

}
}
};

hudElements.js (platformer)

new HUDBar(33,1,6,1,"#FFO000", "#FFFFFF",100, () => {return
game.players[0].health;});

ice.js
//Depends on module "box"
if(modules.indexOf("box") == -1) {
throw "DependancyError: Module box is required for Module ice";

} else {
modules.push("ice");

var Ice = class Ice extends Box {
draw() {
this.t.draw(this.x,this.y,this.w,this.h);
}
}s
Ice.type = "static";
}

images.js

modules.push("image");

var BlockColTile = class BlockColourTile {
constructor(color) {
this.col = color;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 114 of 143

draw(x,y,w,h) {
c.fillStyle = this.col;
c.fillRect(x,y,w,h);

}
};

var BlockColSprite = class BlockColourSprite {
constructor(color) {
this.col = color;

draw(obj) {
c.fillStyle = this.col;
c.fillRect(obj.x,obj.y,obj.w,0obj.h);
}
¥

var Tile = class Tile {
constructor(url,cx,cy,cw,ch) {

this.img = new Image();
this.img.src = url;
this.cx = cx;
this.cy = cy;
this.cw = cw;
this.ch = ch;

draw(x,y,w,h) {
c.drawImage(this.img,this.cx,this.cy,this.cw,this.ch,x,y,w,h);
}
s

//Draws an image at a fixed lLocation in the Llevel
var Sprite = class Sprite extends Tile {
constructor(url,cx,cy,cw,ch,x,y,w,h, offsetFactor) {
super(url,cx,cy,cw,ch);
this.x = x;

this.y = y;
this.w = w;
this.h = h;
this.offsetFactor = offsetFactor;

draw(offset) {
var drawOffset = offset * this.offsetFactor;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 115 of 143

c.drawImage(this.img,this.cx,this.cy,this.cw,this.ch,this.x-drawOffset,t
his.y,this.w,this.h);

}
s

var SpriteSet = class SpriteSet {
constructor(images) {
//Images is an array of background lLayers. images[@] is drawn at the
top
this.layers = images;
this.layerCount = images.length;
}
¥

var Background = class Background extends SpriteSet {
draw(offset) {
var x = this.layerCount;
while(x--) {
this.layers[x].draw(offset);
¥
}
s

var RepeatingTile = class RepeatingTile extends Tile {
constructor(url) {
super(url,o,0,0,0);
}
draw(x,y,w,h) {
c.translate(x,y);
var style = c.createPattern(this.img, "repeat");
c.fillStyle = style;
c.fillRect(0,0,w,h);
c.translate(-x,-y);
}
}s

var noBg = {draw:function(){}};
var noFg = noBg;
var noTile = noBg;

input.js

modules.push("input");

window.addEventListener("load",function() {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 116 of 143

canvas.addEventListener("mousedown", CanvasClickHandler, false);
canvas.style.zIndex = 1;

1)

function CanvasClickHandler(e) {

function getPosition(event) {
evX = event.x;
evY = event.y;

evX -= canvas.offsetlLeft;
evY -= canvas.offsetTop;
return {

canvasX: evX,

canvasY: evy,

screenX: event.Xx,

screenY: event.y,

gameX: tilesX * u * evX/window.innerWidth,
gameY: tilesY * u * evY/window.innerHeight

};

document.body.addEventListener("keydown", function(e) {
if (('keys[27]) && (e.keyCode == 27)) {
if(!game.paused) {
game.pause();

pause.style.display = "block";
} else {
game.play();
pause.style.display = "none";
}
}
keys[e.keyCode] = true;
})s

document.body.addEventListener("keyup", function(e) {
keys[e.keyCode] = false;
1)

console.log("Input.js Loaded");

level.js

modules.push("level");

var Level = class Level {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 117 of 143

constructor(length,background, foreground) {
this.len = length*u;
this.offset = 9;
this.statics = [];
this.dynamics = [];
this.collectibles = [];
this.background background;
this.foreground = foreground;
this.scrolllLock = false;
game.levels.push(this);
this.index = game.levels.length-1;

add(...args) {
for(var i in args) {
var obj = args[i];

if(obj.constructor.type == "static") {
this.statics.push(obj);

} else if(obj.constructor.type == "dynamic") {
this.dynamics.push(obj);

} else if(obj.constructor.type == "collectible") {
this.collectibles.push(obj);

} else {

console.error("Error adding to scene: object",obj,"is not of a
valid type");
}
}
}

//Loop through every item in the scene and see if obj has collided
with 1it,
//Returns an array of all the collision directions relative to obj.
colCheck(obj) {
var dir = [];

var temp = "";
var 1 = this.statics.length;
while(i--) {
temp = Box.colCheck(obj,this.statics[i]);
if(temp !== null) {
dir.push(temp);
dir.push(this.statics[i].constructor.name);
}
}
i = this.dynamics.length;
while(i--) {
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 118 of 143

if(this.dynamics[i] != obj) {
temp = Box.colCheck(obj,this.dynamics[i]);
if(temp !== null) {
dir.push(temp);
dir.push(this.dynamics[i].constructor.name);
this.dynamics[i].collision(obj,temp);
¥
¥
}

return dir;

}

update(multiplier) {
//Update all the entities that may have changed
var i = this.dynamics.length;
while(i--) {
this.dynamics[i].update(multiplier);
}

i = this.collectibles.length;

while(i--) {
this.collectibles[i].update();

}

//Get the rightmost player

var lead = Player.getlLeader();

//If they are in the center of the screen and not at the end of the
Level, scroll the Level Lleft
if((lead.vX > 0.1) & (lead.x > 18*u) && (this.offset < (this.len -
(40*u)) && !this.scrolllLock)) {
this.scroll(lead.vX);
}
//If they are in the center of the screen and not at the start of
the Level, scroll the Llevel right
if((lead.vX < -0.1) && (lead.x < 17*u) && (this.offset > 0) &&
Ithis.scrollLock) {
this.scroll(lead.vX);

}

//Make sure the lLevel 1is not scrolled past its max and minimum
if(this.offset < 0) {
this.scroll(-this.offset);
}
if(this.offset > this.len - 40*u) {
this.scroll((this.len - (40*u)) - this.offset);

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 119 of 143

//Handle Level switching

if(lead.x > 40*u) {
Player.moveAll(1,10);
currentLevel++;

}

if((lead.x < @) && (currentLevel > 0)) {
Player.moveAll(39,10);
currentlLevel--;

}

if(currentLevel >= game.levels.length) {
currentLevel = 0;

}
}

draw() {
this.background.draw(this.offset);
var i = this.statics.length;
while(i--) {
this.statics[i].draw();

}

i = this.dynamics.length;
while(i--) {
this.dynamics[i].draw();

}

i = this.collectibles.length;
while(i--) {

this.collectibles[i].draw();
}

this.foreground.draw(this.offset);

scroll(x) {
var i = this.dynamics.length;

while(i--) {
this.dynamics[i].x -= x;

}

i = this.statics.length;

while(i--) {
this.statics[i].x -= x;

}

Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 120 of 143

i = this.collectibles.length;

while(i--) {
this.collectibles[i].x -= Xx;

}

this.offset += x;

Player.scroll(x);

reset() {
this.scroll(-this.offset);
var i = this.dynamics.length;
while(i--) {

this.dynamics[i].reset();

}

¥

s

console.log("Level.js Loaded");

menus.js (platformer)

window.addEventListener("load",function() {
document.querySelector("#menu button:first-of-type").onclick =
function() {
new Player(1,1,{left:65,right:68,up:32,0pen:83},AlexSprite);
game.play();
document.getElementById('menu').style.display="none";
}s
document.querySelector("#menu button:last-of-type").onclick =
function() {
new Player(1,1,{left:65,right:68,up:32,0pen:83},MaxSprite);
game.play();
document.getElementById('menu').style.display="none";
}s
document.querySelector("#splash button:first-of-type").onclick =
function() {
document.getElementById('splash').style.display="none";
}s
});window.addEventListener("load",function() {
document.querySelector("#menu button:first-of-type").onclick =
function() {
new Player(1,1,{left:65,right:68,up:32,0pen:83},AlexSprite);
game.play();
document.getElementById('menu').style.display="none";

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 121 of 143

}s
document.querySelector("#menu button:last-of-type").onclick =
function() {
new Player(1,1,{left:65,right:68,up:32,0pen:83},MaxSprite);
game.play();
document.getElementById('menu').style.display="none";
}s5
document.querySelector("#splash button:first-of-type").onclick =
function() {
document.getElementById('splash').style.display="none";
}s
}s

mob.js

//Depends on modules projectile
if(modules.indexOf("projectile") == -1) {
throw "Dependancy Error: Module projectile is required for Module
player";
} else {
modules.push("mob");

var Mob = class Mob extends Projectile {
constructor(x,y,h,w,ai,aiData,aiHit) {
super(x,y,h,w,1,1,true);
this.initial = {
x: x*u,
y: y*u
s
this.ai = ai;
this.aiData = aiData;
this.aiHit = aiHit;
if(aiHit === undefined) {
this.aiHit = this.kill;
}
this.encountered = false;
this.dead = false;
this.friction = BoxFriction;

}
update() {
if(!this.dead) {
if((!'this.encountered) && (this.x < 40*u)) {
this.encountered = true;
}
if(this.encountered) {
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 122 of 143

this.ai();

this.move(multiplier);

var dir = game.levels[currentLevel].colCheck(this);
this.checkDir(dir);

this.vX *= Math.pow(this.friction,multiplier);
this.vY += gravity * multiplier;

¥
¥
}
kill() {
this.dead = true;
this.x = 50*u;
this.y = 50*u;
¥
reset() {
this.dead = false;
this.encountered = false;
this.x = this.initial.x;
this.y = this.initial.y;
}

collision(obj,dir) {
//Dynamic Object has collided with mob
var objType = obj.constructor.name;
if(objType == "Player") {

if(dir == "b") {
this.aiHit();
obj.vY = -1*obj.vYmax;
obj.isJumping = false;

} else {
obj.hit(this.aiData.dmg);
if(dir == "1") {

obj.vY = -obj.vYmax;
obj.vX = obj.vXmax;
obj.isJumping = true;

}
if(dir == "r") {
obj.vY = -obj.vYmax;
obj.vX = -obj.vXmax;
obj.isJumping = true;
}
}
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 123 of 143

}
if(objType == "Mob") {
if(dir == "r") {
this.x -= obj.w;
obj.x += this.w ;
}
if(dir == "1") {
this.x += obj.w;
obj.x -= this.w ;
}
}
}

checkDir(dir) {

if(dir.indexO0f("b") 1= -1) {
this.aiData.isJumping = false;

}

if(dir.index0f("Ice") != -1) {
this.friction = IceFriction;

} else {
this.friction

BoxFriction;

draw() {
if ((this.encountered) && (!this.dead)) {
MobSprite.draw(this);
}
}
}s
Mob.type = "dynamic";
console.log("Mob.js loaded");
}

movingPlatform.js

//Depends on module "ai", "platform"
if(modules.indexOf("platform”) == -1) {

throw "DependancyError: Module platform is required for Module
movingPlatform";
} else if(modules.indexOf("ai") == -1) {

throw "DependancyError: Module ai is required for Module
movingPlatform";
} else {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 124 of 143

//Push "platform" to Llist of included modules
modules.push("movingPlatform™);

var MovingPlatform = class MovingPlatform extends Platform {
constructor(x,y,w,h,tile,ai,aiData) {

super(x,y,w,h,tile);
this.vX = 0;
this.vY = 0;

this.encountered = false;
this.ai = ai;
this.aiData = aiData;
this.initial = {

x: Xx*u,

y: y*u
s

draw() {
this.t.draw(this.x,this.y,this.w,this.h);

update() {
if((!this.encountered) && (this.x < 40*u)) {
this.encountered = true;
}
if(this.encountered) {
this.ai();
this.move();

}

reset() {
this.x = this.initial.x;
this.y = this.initial.y;
¥

move() {
this.x += this.vX;
this.y += this.vY;
¥

collision(obj,dir) {
if(dir == "b") {

obj.x += this.vX;

obj.y += this.vY;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 125 of 143

if((obj == Player.getLeader()) &&
(game.levels[currentLevel].offset < (game.levels[currentLevel].len -
(40*u)))) {
game.levels[currentLevel].scroll(this.vX);
}
}
}
}s
MovingPlatform.type = "dynamic";
}

platform.js

//Depends on module "box"
if(modules.indexOf("box") == -1) {
throw "DependancyError: Module box is required for Module platform";
} else {
//Push "platform"” to Llist of included modules
modules.push("platform");

var Platform = class Platform extends Box {
constructor(x,y,w,h,tile) {
super(x,y,w,h,true);
this.t = tile;

}
draw() {
this.t.draw(this.x,this.y,this.w,this.h);
}
¥
Platform.type = "static";
}
player.js
//Depends on modules projectile and input
if(modules.indexOf("projectile") == -1) {

throw "Dependancy Error: Module projectile is required for Module
player";
} else if(modules.indexOf("input") == -1) {

throw "Dependancy Error: Module input is required for Module player";
} else {

//Push "player" to the List of included modules.

modules.push("player");

//Player is a projectile with max XY velocity, friction and
input-based velocity

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 126 of 143

Player = class Player extends Projectile {
constructor(x,y,controls,sprite) {

super(x,y,1,2,10,0,true);
this.controls = controls;
this.vXmax = (1/6)*u;
this.vYmax = (1/4)*u;
this.friction = BoxFriction;
this.isJumping = false;
this.sprite = sprite;
this.health = 100;
this.playerNumber = game.players.length;
game.players.push(this);

static updateAll(multiplier) {
var i = game.players.length;
while(i--){
game.players[i].update(multiplier);
}
}

static drawAll() {
var i = game.players.length;
while(i--){
game.players[i].draw();
}
}

static moveAll(x,y) {
var i = game.players.length;
while(i--){
game.players[i].x
game.players[i].y

x*u;
y*u;

}
}

static getLeader() {
var i = game.players.length;
var leader = game.players[0];
while(i--){
if(game.players[i].x > leader.x) {
leader = game.players[i];

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 127 of 143

return leader;

}

static scroll(x) {
var i = game.players.length;
while(i--){
game.players[i].x -= X;
}
}

//Polymorphic routine, called on every dynamic object every frame
//Checks keys pressed, moves and checks collisions with all items 1in
the current Level
//Dir contains a direction, or null if there 1is no collision.
update(multiplier) {
if(this.y > 20*u) {
this.kill();
return;
}
this.checkKeys(multiplier);
this.move(multiplier);
var dir = game.levels[currentLevel].colCheck(this);
this.checkDir(dir);

}
kill() {
game.levels[currentLevel].reset();
this.x = u;
this.y = u;
this.w = u;
this.h = 2*u;
this.vX = 0;
this.vY = 0;
this.health = 100;
}
draw() {
this.sprite.draw(this);
}

checkKeys(multiplier) {
if (keys[this.controls.left]) {
// Lleft arrow
if (this.vX > -this.vXmax) {
if(!this.isJumping) {
this.vX -= this.vXmax/4;

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 128 of 143

} else {
this.vX -= this.vXmax* (1/8);

}
if (keys[this.controls.right]) {

// right arrow
if (this.vX < this.vXmax) {
if(!this.isJumping) {
this.vX += this.vXmax/4;
} else {
this.vX += this.vXmax * (1/8);

}
}

¥
if (keys[this.controls.up]) {

if (!this.isJumping && this.vY <= 0) {
this.vY -= this.vYmax/5;
if(this.vY < -this.vYmax) {
this.isJumping = true;
}
}

}
this.vX *= Math.pow(this.friction,multiplier);

this.vY += gravity * multiplier;

¥
checkDir(dir) {
if(dir.indexO0f("b") 1= -1) {
this.isJumping = false;
¥
if(dir.indexOf("t") != -1) {
this.vY = 0;
}
if(dir.index0f("Ice") I= -1) {
this.friction = IceFriction;
} else if(dir.indexOf("Platform") I= -1) {
this.friction = BoxFriction;
¥

hit(damage) {
this.health -= damage;
if(this.health <= 0) {
this.kill();

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 129 of 143

}
}
¥
Player.type = "dynamics";

}

console.log("Player.js Loaded");

projectile.js
//Depends on module "box"
if(modules.indexOf("box") == -1) {
throw "DependancyError: Module box is required for Module projectile”;
} else {

//Push "projectile" to List of included modules
modules.push("projectile");

//super() calls the Box constructor, before adding vX and vY
properties, which store XY velocity
var Projectile = class Projectile extends Box {
constructor(x,y,height,width,vX,vY,solid) {
super(x,y,height,width,solid);
this.vX = vX;
this.vY = vY;
}

move(multiplier) {
this.x += this.vX * multiplier;
this.y += this.vY * multiplier;
}
}s
Projectile.type = "dynamic";

}

console.log("Projectile.js Loaded");

sizePowerUp.js

if(modules.indexOf("collectible") == -1) {

throw "DependancyError: Module collectible is required for Module
sizePowerUp";
} else {

modules.push("sizePowerUp");

var SizePowerUp = class SizePowerUp extends Collectible {
constructor(x,y,tile,factor,permanent) {
super(x,y,0.5,0.5,tile);

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 130 of 143

this.ix = x*u;

this.iy = y*u;

this.factor = factor;
this.permanent = permanent;
this.collected = false;

collect(x) {
if(!this.collected) {
this.x = this.ix;
this.y = this.iy;

var collectedBy = x;

if(!this.permanent) {
this.collected = true;

¥

collectedBy.w = this.factor * u;

collectedBy.h = this.factor * 2 * u;

}
}

¥
SizePowerUp.type = "collectible";
}

sprites.js (platformer)

//Draws player depending on players' state
var PlayerSprite = class PlayerSprite {
constructor(img,data) {
this.img = new Image();
this.img.src = img;
this.d = data;
}

draw(player) {
/* sw: Sprite Width

* sh: Sprite Height
* drx: Falling, Facing Right,X Co-ord
* dry: Falling, Facing Right,Y Co-ord
* dlx: Falling, Facing Left,X Co-ord
* dly: Falling, Facing Left,Y Co-ord
* urx: Jumping, Facing Right,X Co-ord
* ury: Jumping, Facing Right,Y Co-ord
* ulx: Jumping, Facing Left,X Co-ord
* uly: Jumping, Facing Left,Y Co-ord
* Lbx: Skidding, facing left, X Co-ord

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 131 of 143

* Lby: Skidding, facing left, Y Co-ord
* rbx: Skidding, facing right, X Co-ord
* rby: Skidding, facing right, Y Co-ord
* L1x: Walking Left, Frame 1, X Co-ord
* L1y: Walking Left, Frame 1, Y Co-ord
* [2x: Walking Left, Frame 2, X Co-ord
* L2y: Walking Left, Frame 2, Y Co-ord
rix: Walking Right, Frame 1, X Co-ord
riy: Walking Right, Frame 1, Y Co-ord
r2x: Walking Right, Frame 2, X Co-ord
r2y: Walking Right, Frame 2, Y Co-ord
* slx: Standing, Facing Left, X Co-ord
* sly: Standing, Facing Left, Y Co-ord
* srx: Standing, Facing Right, X Co-ord
* sry: Standing, Facing Right, Y Co-ord
* frn: Frame Number
* afn: Animation Frame Number;
*/
if((player.vY > 1) && (player.vX >= 0)) {

c.drawImage(this.img,this.d.drx,this.d.dry,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;

}
if((player.vY < -1) && (player.vX >= 0)){

c.drawImage(this.img,this.d.urx,this.d.ury,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;

}

if((player.vy > 1) &&% (player.vX < 0)) {

c.drawImage(this.img,this.d.dlx,this.d.dly,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;

}
if((player.vY < -1) && (player.vX < 0)){

c.drawImage(this.img,this.d.ulx,this.d.uly,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;

}

if((player.vX > 1) && (keys[player.controls.left])) {

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 132 of 143

c.drawImage(this.img,this.d.lbx,this.d.1lby,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;

}
if((player.vX < -1) && (keys[player.controls.right])) {

c.drawImage(this.img,this.d.rbx,this.d.rby,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;
}
if((player.vX > 1)) {
this.d.frn += Math.floor(100/delta);
if(this.d.frn > 40) {
this.d.afn++;
this.d.frn -= 40;

}
if(this.d.afn % 2 === 0) {

c.drawImage(this.img,this.d.rlx,this.d.rly,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
} else {

c.drawImage(this.img,this.d.r2x,this.d.r2y,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
}
return;
}
if((player.vX < -1)) {
this.d.frn += Math.floor(100/delta);
if(this.d.frn > 40) {
this.d.afn++;
this.d.frn -= 40;

}
if(this.d.afn % 3 === 0) {

c.drawImage(this.img,this.d.1l1x,this.d.1l1ly,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
} else {

c.drawImage(this.img,this.d.12x,this.d.12y,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
}

return;

}

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 133 of 143

if(player.vX >= 0) {

c.drawImage(this.img,this.d.srx,this.d.sry,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;

}

if(player.vX < 0) {

c.drawImage(this.img,this.d.slx,this.d.sly,this.d.sw,this.d.sh,player.x,
player.y,player.w,player.h);
return;

}
}
};

var mobImg = new Image();

mobImg.src = "assets/0ld enemies.png";

var MobSprite = class MobSprite extends PlayerSprite {
static draw(mob) {

if(mob.d === undefined) {
mob.d = {
img: mobImg,
afn: 0,
frn: 0
¥
}

mob.d.frn += Math.floor(100/delta);
if(mob.d.frn > 40) {

mob.d.afn++;

mob.d.frn -= 40;

¥

var mobDir = mob.aiData.dir,dirx;

if(mobDir === undefined) {
mobDir = -1;

¥

var dirX = 56*(mobDir+1);

var img¥ = 0;
if(currentLevel == 3) {

imgy = 16;
}
if(mob.ai.name == "VerticalPatrolAI") {
imgY = 48;
}
Deep Sohelia

CAGE - The Chrome Application Game Engine
Page 134 of 143

if(mob.ai.name == "Boss1AI") {
imgy = 32;
}
switch(mob.d.afn % 5) {
case(0):
c.drawImage(mob.d.img,dirX,imgY,16,16,mob.x,mob.y,mob.w,mob.h);
break;
case(1):

@]

.drawImage(mob.d.img,dirX+16,imgY,16,16,mob.x,mob.y,mob.w,mob.h);
break;
case(2):

@]

.drawImage(mob.d.img,dirX+32,imgy¥,16,16,mob.x,mob.y,mob.w,mob.h);
break;
case(3):

(@}

.drawImage(mob.d.img,dirX+48,imgY,16,16,mob.x,mob.y,mob.w,mob.h);
break;
case(4):

(@]

.drawImage(mob.d.img,dirX+64,imgY,16,16,mob.x,mob.y,mob.w,mob.h);
break;
¥
¥
s

var dirt = new RepeatingTile("assets/dirt2.png");

var levellBg = new Background([
new Sprite("assets/sky2-100by20.png",0,0,100,20,0,0,10000,2000,0.2),
new Sprite("assets/sky.png",0,0,40,20,0,0,4000,2000,0)
1);
var level2Bg = new Background([
new Sprite("assets/sky2-2.png",0,0,100,20,0,0,10000,2000,0.2),
new Sprite("assets/skyl-2.png",0,0,40,20,0,0,4000,2000,0)
1

var level3Bg = new Background([
new Sprite("assets/sky2-100by20.png",0,0,100,20,0,0,10000,2000,0.2),
new Sprite("assets/dark sky-2.png",0,0,40,20,0,0,4000,2000,0)

1);

var level4Bg = new Background([
new Sprite("assets/nightSky.png",0,0,40,20,0,0,4000,2000,0)

1);

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 135 of 143

var levellFg
new Sprite(

s

var level2Fg
new Sprite(

1);

var level3Fg
new Sprite(

1);

var level4Fg

new Background([

assets/levels-1.png",0,0,800,80,0,0,20000,2000,1)

new Background([

assets/levels-2.png",0,0,800,80,0,0,20000,2000,1)

new Background([

assets/levels-3.png",0,0,800,80,0,0,20000,2000,1)

new Background([

new Sprite("assets/levels-4.png",0,0,800,80,0,0,20000,2000,1)

1);

var AlexSprite
sw: 25,
sh: 50,

drx:
dry:
dlx:
dly:
urx:
ury:
ulx:
uly:
1bx:
1by:
rbx:
rby:
11x:
11y:
12x:
12y:
rix:
rly:
r2x:
r2y:
slx:
sly:
srx:
sry:

Deep Sohelia
CAGE - The Chrome Application Game Engine

0:
50,
25,
50,
50,
6)
75,
e)
75,
0)
50,
9.’
75,
9.’
25,
50,
50,
e.’
9)
50,
25,
e)
@.’
9)

= new PlayerSprite("assets/spritesheetFinal.png",{

Page 136 of 143

frn: 0,

afn: 0

3

var MaxSprite = new PlayerSprite("assets/spritesheetFinal2.png",{
sw: 25,
sh: 50,
drx: 25,
dry: 50,
dlx: 50,
dly: 50,
urx: 50,
ury: 9,
ulx: 0,
uly: 50,
1bx: o,
lby: 50,
rbx: 50,
rby: o,
1lix: o,
11y: 50,
12x: 50,
12y: 50,
rix: 50,
rily: o,
r2x:. 25,
r2y: 50,
slx: 25,
sly: o,
srx: 0,
sry: 0,
frn: 0,
afn: 0

3

var coin = new Tile("assets/crate.png",0,0,100,100);

switches.js

//Depends on module "platform"
if(modules.indexOf("platform”) == -1) {
throw "DependancyError: Module platform is required for Module
switch";
} else {
//Push "switch" to Llist of included modules

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 137 of 143

modules.push("switch");

var Switch = class Switch extends Box {
constructor(x,y,spritel,sprite2,defaultPosition,entity) {
super(x,y,1,2,false);
this.on = defaultPosition;
this.defaultPosition = defaultPosition;
this.entity = entity;
this.sl = spritel;
this.s2 = sprite2;

draw() {
if(this.open) {
this.sl.draw(this.x,this.y,this.w,this.h);
} else {
this.s2.draw(this.x,this.y,this.w,this.h);

}
}

collision(obj,dir) {
if(obj.constructor.name == "Player") {
var triggered;
if (keys[obj.controls.open]) {
if (!triggered) {
//Do something depending on the direction the collision
happened from.
this.on = !this.on;
this.entity.update();
triggered = true;
}
} else {
triggered

false;

reset() {
this.on

this.defaultPosition;
}
}s
Switch.type
}

"dynamic";

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 138 of 143

Levels of Game:

World 1 Level 1 (w1l1.js)

var wlll;

wlll = new Level(200,levellBg,levellFg);

wlll.statics.push(
Platform(-3, ©, 3, 20, noTile),
Platform(@, 18, 53, 2, noTile),

new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new

Platform(35, 17,
Platform(36, 16,
Platform(37, 15,
Platform(38, 14,
Platform(39, 13,
Platform(58, 16,
Platform(60, 13,
Platform(74, 17,
Platform(79, 13,
Platform(91, 13,
Platform(95, 14,
Platform(95, 15,
Platform(95, 16,
Platform(95, 17,
Platform(95, 18,
Platform(95, 19,

Platform(116, 17,
Platform(120, 15,
Platform(124, 13,
Platform(126, 17,
Platform(128, 11,
Platform(130, 15,

Platform(132, 9,

Platform(140, 18,
Platform(148, 15,
Platform(162, 13,
Platform(166, 13,
Platform(170, 18,
Platform(170, 17,
Platform(170, 16,
Platform(170, 15,
Platform(170, 14,
Platform(170, 13,
Platform(170, 12,
Platform(170, 11,

Deep Sohelia
CAGE - The Chrome Application Game Engine

18, 1, noTile),
17, 1, noTile),
8, 1, noTile),
7, 1, noTile),
6, 1, noTile),
13, 4, noTile),
11, 3, noTile),
2, 3, noTile),
4, 7, noTile),
4, 7, noTile),
1, 1, noTile),
2, 1, noTile),
3, 1, noTile),
4, 1, noTile),
5, 1, noTile),
27, 1, noTile),
, 3, noTile),
5, noTile),
7, noTile),
3, noTile),
, 9, noTile),
2, 5, noTile),
2, 11, noTile),
2, 1, noTile),
12, 5, noTile),
2, 2, noTile),
2, 2, noTile),
30, 2, noTile),
11, 1, noTile),
10, 1, noTile),
, 1, noTile),
1, noTile),
1, noTile),
1, noTile),
1, noTile),

-

-

N N NMNDNDN
-

- -

Ul O N 00 O
-

[

Page 139 of 143

new Platform(170, 10, 4, 1, noTile),

new Platform(192, 11, 2, 2, noTile),
new Platform(195, ©, 5, 9, noTile),
new Platform(195, 15, 5, 9, noTile),
new Platform(196, 9, 4, 1, noTile),
new Platform(196, 14, 4, 1, noTile)

)8

console.log("World-1 Level-1 (wlll.js) Loaded");

World 1 Level 2 (w1l2.js)

var wll2;

wll2 = new Level(200,level2Bg,level2Fg);

wll2.add(
new Platform(©, 14, 2, 1, noTile),
new Platform(©, 15, 3, 1, noTile),
new Platform(©, 16, 4, 1, noTile),
new Platform(©, 17, 5, 1, noTile),
new Platform(©, 18, 46, 2, noTile),
new Platform(14, 14, 7, 1, noTile),
new Platform(30, 17, 16, 1, noTile),
new Platform(31, 16, 15, 1, noTile),
new Platform(32, 15, 14, 1, noTile),
new Platform(33, 14, 13, 1, noTile),
new Platform(34, 13, 12, 1, noTile),
new Platform(35, 12, 11, 1, noTile),
new Platform(36, 11, 10, 1, noTile),
new Platform(37, 10, 9, 1, noTile),
new Platform(38, 9, 8, 1, noTile),
new Platform(39, 8, 7, 1, noTile),
new Platform(40, 7, 6, 1, noTile),
new Platform(41, 6, 5, 1, noTile),
new Platform(42, 5, 4, 1, noTile),
new Platform(54, 13, 19, 7, noTile),
new Platform(81, 13, 1, 7, noTile),
new Platform(95, 18, 20, 2, noTile),
new Platform(107, 17, 8, 1, noTile),
new Platform(108, 16, 7, 1, noTile),
new Platform(109, 15, 6, 1, noTile),
new Platform(110, 14, 5, 1, noTile),
new Platform(111, 13, 4, 1, noTile),

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 140 of 143

new Platform(114,
new Platform(138,
new Platform(138,
new Platform(138,
new Platform(138,
new Platform(138,
new Platform(138,
new Platform(170,
new Platform(170,
new Platform(170,
new Platform(170,
new Platform(170,
new Platform(170,
new Platform(170,
new Platform(170,
new Platform(170,
new Platform(192,
new Platform(195,
new Platform(195,
new Platform(196,
new Platform(196,

new BouncingPlatform(46,17,8,3, noTile),
new BouncingPlatform(76,16,2,1, noTile),
new BouncingPlatform(87,19,3,1, noTile),

19,
13,
14,
15,
16,
17,
18,
17,
18,
16,
15,
14,
13,
12,
11,
10,
11,
e)
15,
9,
14,

47,

-

-

-

RN
P WO ubhwN
v e e -

= W
[]
. .

- - -

-

- -

-

Ui LT N U1 OV NN 00 O
-

)
4,
4,

noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
2, noTile),
9, noTile),
9, noTile),
1, noTile),
1, noTile),

- - [- [-

-

- - [- - - -

PR R RRPRRPRRPRNRRPRRPRRPRRRRESR
-

-

new MovingPlatform(123,13,6,2, dirt, PatrolAI, {x1:115, x2:138, vX:1,

dir:1}),

new MovingPlatform(150,14,3,1, dirt, PatrolAI,{x1:146, x2:157, vX:1,

dir:1}),

new MovingPlatform(160,11,3,1, dirt, PatrolAI,{x1:156, x2:167, vX:3,

dir:-1}),

new MovingPlatform(170,8,3,1, dirt, PatrolAI,{x1:166, x2:177, vX:2,

dir:1})
)s

console.log("World-1 Level-2 (wll2.js) Loaded");

World 1 Level 3 (w1l3.js)

var wll3;

wll3 = new Level(200,level3Bg,level3Fg);

wll3.add(
new Platform(0O,

14,

7,

new Platform(10, 17, 40,

Deep Sohelia

6, noTile),
3, noTile),

CAGE - The Chrome Application Game Engine

Page 141 of 143

new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new
new

Platform(40, 13,
Platform(60, 13,
Platform(74, 13,
Platform(104, 6,
Platform(126, 6,
Platform(154, 9,
Platform(170, 17,
Platform(170, 18,
Platform(170, 16,
Platform(170, 15,
Platform(170, 14,
Platform(170, 13,
Platform(170, 12,
Platform(170, 11,
Platform(170, 10,
Platform(192, 11,
Platform(195, 0,
Platform(195, 15,
Platform(196, 9,
Platform(196, 14,

=
(o]
-

-

-

-

=
R O b 00NN
- e -

= W
[Y]
Lo W,

-

- - -

A Ut v MDA UTOYNN OV
-

-

4,

- - [- -

-

- - - - -

R OO NRPRRPRRRRRERRNEPR
-

-

1,

noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),
noTile),

Mob(24,15,2,2,PatrolAI,{dmg:10,x1:10,x2:40,vX:1.6,dir:1,}),
Mob(53.5,7,3,3,VerticalPatrolAl, {dmg:15,y1:5,y2:19,vY:1.6,dir:1}),
Mob(69,7,3,3,VerticalPatrolAI,{dmg:15,y1:5,y2:19,vY:1.6,dir:-1}),
Mob(86,13,1,1,NoAI,{dmg:5,}),
Mob(99,9,1,1,NoAI,{dmg:5,}),
Mob(117,10,2,2,VerticalPatrolAl, {dmg:10,y1:1,y2:16,vY:4,dir:1}),
Mob(163,16,4,4,VerticalPatrolAI,{dmg:20,y1:9,y2:19,vY:2,dir:-1}),

new MovingPlatform(85,14,3,1,

PatrolAI,{x1:83,x2:101,vX:5,dir

new MovingPlatform(98,10,3,1,

PatrolAI,{x1:92,x2:101,vX:5,dir

dirt,
:11}),

dirt,
:'1}))

new MovingPlatform(132,10,3,1, dirt,
VerticalPatrolAI,{yl:6,y2:19,vY:1,dir:1}),

new MovingPlatform(140,10,3,1, dirt,
VerticalPatrolAI,{yl:6,y2:19,vY:10,dir:-1}),

new MovingPlatform(148,10,3,1, dirt,
VerticalPatrolAI,{y1:9,y2:19,vY:7,dir:1})

);

console.log("World-1 Level-3 (wll3.js) Loaded");

World 1 Boss (w1boss.js)

var wlboss;

Deep Sohelia
CAGE - The Chrome Application Game Engine

Page 142 of 143

wlboss = new Level(80,level4Bg,level4dFg);

wlboss.add(
new Platform(0, 18, 80, 2, noTile),
new Platform(30, 14, 10.01, 6, noTile),
new Platform(40, 14, 1, 1, noTile),
new Platform(40, ©, 1, 11, noTile),
new Platform(72, 14, 8, 1, noTile),
new Platform(80, 0, 1, 14, noTile),

new Door(40,11,1,3,dirt,true,0),
new Door(74,15,1,3,dirt,false,1)
)

var bossPlat = new MovingPlatform(72,13,8,1, dirt,
PatrolAI,{x1:41.05,x2:79.95,vX:0,dir:-1});

var bossMob = new
Mob(72,6,8,8,Boss1AI,{dmg:50,health:4,locked:false},BosslHit);

wlboss.dynamics.push(
bossMob,
bossPlat

IE

wlboss.reset = function() {
bossMob.aiData = {dmg:50,health:4,locked:true,stage:undefined};
bossMob.x = 32*u;
bossMob.y = 6*u;
bossPlat.x = 32*u;
bossPlat.aiData.vX = 0;

};

console.log("World 1 Boss Level (wlboss.js) Loaded");

Deep Sohelia
CAGE - The Chrome Application Game Engine
Page 143 of 143

